What Makes a Good Natural Language Prompt?
- URL: http://arxiv.org/abs/2506.06950v1
- Date: Sat, 07 Jun 2025 23:19:27 GMT
- Title: What Makes a Good Natural Language Prompt?
- Authors: Do Xuan Long, Duy Dinh, Ngoc-Hai Nguyen, Kenji Kawaguchi, Nancy F. Chen, Shafiq Joty, Min-Yen Kan,
- Abstract summary: We conduct a meta-analysis surveying more than 150 prompting-related papers from leading NLP and AI conferences from 2022 to 2025.<n>We propose a property- and human-centric framework for evaluating prompt quality, encompassing 21 properties categorized into six dimensions.<n>We then empirically explore multi-property prompt enhancements in reasoning tasks, observing that single-property enhancements often have the greatest impact.
- Score: 72.3282960118995
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As large language models (LLMs) have progressed towards more human-like and human--AI communications have become prevalent, prompting has emerged as a decisive component. However, there is limited conceptual consensus on what exactly quantifies natural language prompts. We attempt to address this question by conducting a meta-analysis surveying more than 150 prompting-related papers from leading NLP and AI conferences from 2022 to 2025 and blogs. We propose a property- and human-centric framework for evaluating prompt quality, encompassing 21 properties categorized into six dimensions. We then examine how existing studies assess their impact on LLMs, revealing their imbalanced support across models and tasks, and substantial research gaps. Further, we analyze correlations among properties in high-quality natural language prompts, deriving prompting recommendations. We then empirically explore multi-property prompt enhancements in reasoning tasks, observing that single-property enhancements often have the greatest impact. Finally, we discover that instruction-tuning on property-enhanced prompts can result in better reasoning models. Our findings establish a foundation for property-centric prompt evaluation and optimization, bridging the gaps between human--AI communication and opening new prompting research directions.
Related papers
- Reasoning Capabilities and Invariability of Large Language Models [49.23570751696334]
We aim to provide a comprehensive analysis of Large Language Models' reasoning competence.<n>We introduce a new benchmark dataset with a series of simple reasoning questions demanding shallow logical reasoning.<n>An empirical analysis involving zero-shot and few-shot prompting across 24 LLMs of different sizes reveals that, while LLMs with over 70 billion parameters perform better in the zero-shot setting, there is still a large room for improvement.
arXiv Detail & Related papers (2025-05-01T18:12:30Z) - Thinking Machines: A Survey of LLM based Reasoning Strategies [33.08089616645845]
Reasoning in Large Language Models (LLMs) aims to bridge this gap by enabling these models to think and re-evaluate their actions and responses.<n> Reasoning is an essential capability for complex problem-solving and a necessary step toward establishing trust in Artificial Intelligence (AI)<n>This will make AI suitable for deployment in sensitive domains, such as healthcare, banking, law, defense, security etc.
arXiv Detail & Related papers (2025-03-13T19:03:41Z) - The Superalignment of Superhuman Intelligence with Large Language Models [63.96120398355404]
We discuss the concept of superalignment from the learning perspective to answer this question.<n>We highlight some key research problems in superalignment, namely, weak-to-strong generalization, scalable oversight, and evaluation.<n>We present a conceptual framework for superalignment, which consists of three modules: an attacker which generates adversary queries trying to expose the weaknesses of a learner model; a learner which will refine itself by learning from scalable feedbacks generated by a critic model along with minimal human experts; and a critic which generates critics or explanations for a given query-response pair, with a target of improving the learner by criticizing.
arXiv Detail & Related papers (2024-12-15T10:34:06Z) - Do great minds think alike? Investigating Human-AI Complementarity in Question Answering with CAIMIRA [43.116608441891096]
Humans outperform AI systems in knowledge-grounded abductive and conceptual reasoning.
State-of-the-art LLMs like GPT-4 and LLaMA show superior performance on targeted information retrieval.
arXiv Detail & Related papers (2024-10-09T03:53:26Z) - Emergent Language: A Survey and Taxonomy [9.823821010022932]
The paper provides a comprehensive review of 181 scientific publications on emergent language in artificial intelligence.<n>Its objective is to serve as a reference for researchers interested in or proficient in the field.
arXiv Detail & Related papers (2024-09-04T12:22:05Z) - Holmes: A Benchmark to Assess the Linguistic Competence of Language Models [59.627729608055006]
We introduce Holmes, a new benchmark designed to assess language models (LMs) linguistic competence.
We use computation-based probing to examine LMs' internal representations regarding distinct linguistic phenomena.
As a result, we meet recent calls to disentangle LMs' linguistic competence from other cognitive abilities.
arXiv Detail & Related papers (2024-04-29T17:58:36Z) - Igniting Language Intelligence: The Hitchhiker's Guide From
Chain-of-Thought Reasoning to Language Agents [80.5213198675411]
Large language models (LLMs) have dramatically enhanced the field of language intelligence.
LLMs leverage the intriguing chain-of-thought (CoT) reasoning techniques, obliging them to formulate intermediate steps en route to deriving an answer.
Recent research endeavors have extended CoT reasoning methodologies to nurture the development of autonomous language agents.
arXiv Detail & Related papers (2023-11-20T14:30:55Z) - Re-Reading Improves Reasoning in Large Language Models [87.46256176508376]
We introduce a simple, yet general and effective prompting method, Re2, to enhance the reasoning capabilities of off-the-shelf Large Language Models (LLMs)
Unlike most thought-eliciting prompting methods, such as Chain-of-Thought (CoT), Re2 shifts the focus to the input by processing questions twice, thereby enhancing the understanding process.
We evaluate Re2 on extensive reasoning benchmarks across 14 datasets, spanning 112 experiments, to validate its effectiveness and generality.
arXiv Detail & Related papers (2023-09-12T14:36:23Z) - Framework-Based Qualitative Analysis of Free Responses of Large Language
Models: Algorithmic Fidelity [1.7947441434255664]
Large-scale generative Language Models (LLMs) can simulate free responses to interview questions like those traditionally analyzed using qualitative research methods.
Here we consider whether artificial "silicon participants" generated by LLMs may be productively studied using qualitative methods.
arXiv Detail & Related papers (2023-09-06T15:00:44Z) - AI Text-to-Behavior: A Study In Steerability [0.0]
The research explores the steerability of Large Language Models (LLMs)
We quantitatively gauged the model's responsiveness to tailored prompts using a behavioral psychology framework called OCEAN.
Our findings underscore GPT's versatility and ability to discern and adapt to nuanced instructions.
arXiv Detail & Related papers (2023-08-07T18:14:24Z) - Investigating Fairness Disparities in Peer Review: A Language Model
Enhanced Approach [77.61131357420201]
We conduct a thorough and rigorous study on fairness disparities in peer review with the help of large language models (LMs)
We collect, assemble, and maintain a comprehensive relational database for the International Conference on Learning Representations (ICLR) conference from 2017 to date.
We postulate and study fairness disparities on multiple protective attributes of interest, including author gender, geography, author, and institutional prestige.
arXiv Detail & Related papers (2022-11-07T16:19:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.