論文の概要: Safety-Aware Reinforcement Learning for Control via Risk-Sensitive Action-Value Iteration and Quantile Regression
- arxiv url: http://arxiv.org/abs/2506.06954v1
- Date: Sun, 08 Jun 2025 00:22:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-10 16:33:10.583564
- Title: Safety-Aware Reinforcement Learning for Control via Risk-Sensitive Action-Value Iteration and Quantile Regression
- Title(参考訳): リスク感性行動価値反復と量子回帰による制御のための安全意識強化学習
- Authors: Clinton Enwerem, Aniruddh G. Puranic, John S. Baras, Calin Belta,
- Abstract要約: 量子ベースのアクションバリュー反復法は、期待されるコスト対ゴーの分布を学習することで、このバイアスを低減する。
既存の手法では、コスト関数の組み合わせによる複雑なニューラルネットワークアーキテクチャや手動のトレードオフが必要になることが多い。
本研究では、複雑なアーキテクチャを使わずに安全性を確保するために、条件付き値-アット・リスクを組み込んだリスク正規化量子化アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 2.592761128203891
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Mainstream approximate action-value iteration reinforcement learning (RL) algorithms suffer from overestimation bias, leading to suboptimal policies in high-variance stochastic environments. Quantile-based action-value iteration methods reduce this bias by learning a distribution of the expected cost-to-go using quantile regression. However, ensuring that the learned policy satisfies safety constraints remains a challenge when these constraints are not explicitly integrated into the RL framework. Existing methods often require complex neural architectures or manual tradeoffs due to combined cost functions. To address this, we propose a risk-regularized quantile-based algorithm integrating Conditional Value-at-Risk (CVaR) to enforce safety without complex architectures. We also provide theoretical guarantees on the contraction properties of the risk-sensitive distributional Bellman operator in Wasserstein space, ensuring convergence to a unique cost distribution. Simulations of a mobile robot in a dynamic reach-avoid task show that our approach leads to more goal successes, fewer collisions, and better safety-performance trade-offs compared to risk-neutral methods.
- Abstract(参考訳): 主ストリーム近似行動値反復強化学習(RL)アルゴリズムは過大評価バイアスに悩まされ、高分散確率環境における最適部分ポリシーが導かれる。
量子ベースのアクション・バリュー反復法は、量子回帰を用いて期待されるコスト・ツー・ゴーの分布を学習することで、このバイアスを低減する。
しかしながら、これらの制約がRLフレームワークに明示的に統合されていない場合、学習されたポリシーが安全制約を満たすことを保証することは、依然として課題である。
既存の手法では、コスト関数の組み合わせによる複雑なニューラルネットワークアーキテクチャや手動のトレードオフが必要になることが多い。
そこで本稿では,複雑なアーキテクチャを使わずに安全性を確保するために,CVaR(Conditional Value-at-Risk)を統合したリスク規則化量子化アルゴリズムを提案する。
また、ワッサーシュタイン空間におけるリスク感受性分布作用素ベルマンの収縮特性に関する理論的保証を与え、一意のコスト分布への収束を保証する。
ダイナミックリーチ回避タスクにおける移動ロボットのシミュレーションにより,我々のアプローチは,リスクニュートラル法と比較して,目標達成,衝突の減少,安全性能のトレードオフの改善につながることが示された。
関連論文リスト
- Regularization for Adversarial Robust Learning [18.46110328123008]
我々は,$phi$-divergence正規化を分散ロバストなリスク関数に組み込む,対角訓練のための新しい手法を開発した。
この正規化は、元の定式化と比較して計算の顕著な改善をもたらす。
本研究では,教師付き学習,強化学習,文脈学習において提案手法の有効性を検証し,様々な攻撃に対して最先端の性能を示す。
論文 参考訳(メタデータ) (2024-08-19T03:15:41Z) - Integrating DeepRL with Robust Low-Level Control in Robotic Manipulators for Non-Repetitive Reaching Tasks [0.24578723416255746]
ロボット工学では、現代の戦略は学習に基づくもので、複雑なブラックボックスの性質と解釈可能性の欠如が特徴である。
本稿では, 深部強化学習(DRL)に基づく衝突のない軌道プランナと, 自動調整型低レベル制御戦略を統合することを提案する。
論文 参考訳(メタデータ) (2024-02-04T15:54:03Z) - Learning Predictive Safety Filter via Decomposition of Robust Invariant
Set [6.94348936509225]
本稿では, RMPCとRL RLの併用による非線形システムの安全フィルタの合成について述べる。
本稿では,ロバストリーチ問題に対する政策アプローチを提案し,その複雑性を確立する。
論文 参考訳(メタデータ) (2023-11-12T08:11:28Z) - Provably Efficient Iterated CVaR Reinforcement Learning with Function
Approximation and Human Feedback [57.6775169085215]
リスクに敏感な強化学習は、期待される報酬とリスクのバランスをとるポリシーを最適化することを目的としている。
本稿では,線形および一般関数近似の下で,CVaR(Iterated Conditional Value-at-Risk)を目標とする新しいフレームワークを提案する。
本稿では,この反復CVaR RLに対するサンプル効率の高いアルゴリズムを提案し,厳密な理論的解析を行う。
論文 参考訳(メタデータ) (2023-07-06T08:14:54Z) - A Multiplicative Value Function for Safe and Efficient Reinforcement
Learning [131.96501469927733]
本稿では,安全評論家と報酬評論家からなる新しい乗法値関数を持つモデルフリーRLアルゴリズムを提案する。
安全評論家は、制約違反の確率を予測し、制限のないリターンのみを見積もる報酬批評家を割引する。
安全制約を付加した古典的RLベンチマークや、画像を用いたロボットナビゲーションタスク、生のライダースキャンを観察する4つの環境において、本手法の評価を行った。
論文 参考訳(メタデータ) (2023-03-07T18:29:15Z) - Safety Correction from Baseline: Towards the Risk-aware Policy in
Robotics via Dual-agent Reinforcement Learning [64.11013095004786]
本稿では,ベースラインと安全エージェントからなる二重エージェント型安全強化学習戦略を提案する。
このような分離されたフレームワークは、RLベースの制御に対して高い柔軟性、データ効率、リスク認識を可能にする。
提案手法は,難易度の高いロボットの移動・操作作業において,最先端の安全RLアルゴリズムより優れる。
論文 参考訳(メタデータ) (2022-12-14T03:11:25Z) - Evaluating Model-free Reinforcement Learning toward Safety-critical
Tasks [70.76757529955577]
本稿では、国家安全RLの観点から、この領域における先行研究を再考する。
安全最適化と安全予測を組み合わせた共同手法であるUnrolling Safety Layer (USL)を提案する。
この領域のさらなる研究を容易にするため、我々は関連するアルゴリズムを統一パイプラインで再現し、SafeRL-Kitに組み込む。
論文 参考訳(メタデータ) (2022-12-12T06:30:17Z) - Model-based Safe Deep Reinforcement Learning via a Constrained Proximal
Policy Optimization Algorithm [4.128216503196621]
オンライン方式で環境の遷移動態を学習する,オンライン型モデルに基づくセーフディープRLアルゴリズムを提案する。
我々は,本アルゴリズムがより標本効率が高く,制約付きモデルフリーアプローチと比較して累積的ハザード違反が低いことを示す。
論文 参考訳(メタデータ) (2022-10-14T06:53:02Z) - Safe Exploration Incurs Nearly No Additional Sample Complexity for
Reward-free RL [43.672794342894946]
Reward-free reinforcement learning (RF-RL) は、未知の環境を探索するランダムなアクションテイクに依存する。
このような安全な探索要求が、得られた政策の計画における望ましい最適性を達成するために、対応するサンプルの複雑さにどのように影響するかは、いまだ不明である。
本稿では,Safe reWard-frEe ExploraTion (SWEET) フレームワークを提案し,Tabular-SWEET と Low-rank-SWEET というアルゴリズムを開発した。
論文 参考訳(メタデータ) (2022-06-28T15:00:45Z) - Closing the Closed-Loop Distribution Shift in Safe Imitation Learning [80.05727171757454]
模倣学習問題において,安全な最適化に基づく制御戦略を専門家として扱う。
我々は、実行時に安価に評価でき、専門家と同じ安全保証を確実に満足する学習されたポリシーを訓練する。
論文 参考訳(メタデータ) (2021-02-18T05:11:41Z) - Risk-Sensitive Deep RL: Variance-Constrained Actor-Critic Provably Finds
Globally Optimal Policy [95.98698822755227]
本研究は,リスクに敏感な深層強化学習を,分散リスク基準による平均報酬条件下で研究する試みである。
本稿では,ポリシー,ラグランジュ乗算器,フェンシェル双対変数を反復的かつ効率的に更新するアクタ批判アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-12-28T05:02:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。