Deep RL Needs Deep Behavior Analysis: Exploring Implicit Planning by Model-Free Agents in Open-Ended Environments
- URL: http://arxiv.org/abs/2506.06981v1
- Date: Sun, 08 Jun 2025 03:43:48 GMT
- Title: Deep RL Needs Deep Behavior Analysis: Exploring Implicit Planning by Model-Free Agents in Open-Ended Environments
- Authors: Riley Simmons-Edler, Ryan P. Badman, Felix Baastad Berg, Raymond Chua, John J. Vastola, Joshua Lunger, William Qian, Kanaka Rajan,
- Abstract summary: We apply tools from neuroscience and ethology to study DRL agents in a novel, complex, partially observable environment.<n>We use this environment as a platform for applying joint behavioral and neural analysis to agents.<n>Contrary to common assumptions, we find that model-free RNN-based DRL agents can exhibit structured, planning-like behavior.
- Score: 1.6576957162725725
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding the behavior of deep reinforcement learning (DRL) agents -- particularly as task and agent sophistication increase -- requires more than simple comparison of reward curves, yet standard methods for behavioral analysis remain underdeveloped in DRL. We apply tools from neuroscience and ethology to study DRL agents in a novel, complex, partially observable environment, ForageWorld, designed to capture key aspects of real-world animal foraging -- including sparse, depleting resource patches, predator threats, and spatially extended arenas. We use this environment as a platform for applying joint behavioral and neural analysis to agents, revealing detailed, quantitatively grounded insights into agent strategies, memory, and planning. Contrary to common assumptions, we find that model-free RNN-based DRL agents can exhibit structured, planning-like behavior purely through emergent dynamics -- without requiring explicit memory modules or world models. Our results show that studying DRL agents like animals -- analyzing them with neuroethology-inspired tools that reveal structure in both behavior and neural dynamics -- uncovers rich structure in their learning dynamics that would otherwise remain invisible. We distill these tools into a general analysis framework linking core behavioral and representational features to diagnostic methods, which can be reused for a wide range of tasks and agents. As agents grow more complex and autonomous, bridging neuroscience, cognitive science, and AI will be essential -- not just for understanding their behavior, but for ensuring safe alignment and maximizing desirable behaviors that are hard to measure via reward. We show how this can be done by drawing on lessons from how biological intelligence is studied.
Related papers
- A Survey of Self-Evolving Agents: On Path to Artificial Super Intelligence [87.08051686357206]
Large Language Models (LLMs) have demonstrated strong capabilities but remain fundamentally static.<n>As LLMs are increasingly deployed in open-ended, interactive environments, this static nature has become a critical bottleneck.<n>This survey provides the first systematic and comprehensive review of self-evolving agents.
arXiv Detail & Related papers (2025-07-28T17:59:05Z) - Embodied World Models Emerge from Navigational Task in Open-Ended Environments [5.785697934050656]
We ask whether a recurrent agent, trained solely by sparse rewards to solve procedurally generated planar mazes, can autonomously internalize metric concepts such as direction, distance and obstacle layout.<n>After training, the agent consistently produces near-optimal paths in unseen mazes, behavior that hints at an underlying spatial model.
arXiv Detail & Related papers (2025-04-15T17:35:13Z) - Mechanistic Interpretability of Reinforcement Learning Agents [0.0]
This paper explores the mechanistic interpretability of reinforcement learning (RL) agents through an analysis of a neural network trained on procedural maze environments.
By dissecting the network's inner workings, we identified fundamental features like maze walls and pathways, forming the basis of the model's decision-making process.
arXiv Detail & Related papers (2024-10-30T21:02:50Z) - Synthesizing Evolving Symbolic Representations for Autonomous Systems [2.4233709516962785]
This paper presents an open-ended learning system able to synthesize from scratch its experience into a PPDDL representation and update it over time.
The system explores the environment and iteratively: (a) discover options, (b) explore the environment using options, (c) abstract the knowledge collected and (d) plan.
arXiv Detail & Related papers (2024-09-18T07:23:26Z) - Ego-Foresight: Agent Visuomotor Prediction as Regularization for RL [34.6883445484835]
Ego-Foresight is a self-supervised method for disentangling agent and environment based on motion and prediction.
We show that visuomotor prediction of the agent provides regularization to the RL algorithm, by encouraging the actions to stay within predictable bounds.
We integrate Ego-Foresight with a model-free RL algorithm to solve simulated robotic manipulation tasks, showing an average improvement of 23% in efficiency and 8% in performance.
arXiv Detail & Related papers (2024-05-27T13:32:43Z) - Analyzing Adversarial Inputs in Deep Reinforcement Learning [53.3760591018817]
We present a comprehensive analysis of the characterization of adversarial inputs, through the lens of formal verification.
We introduce a novel metric, the Adversarial Rate, to classify models based on their susceptibility to such perturbations.
Our analysis empirically demonstrates how adversarial inputs can affect the safety of a given DRL system with respect to such perturbations.
arXiv Detail & Related papers (2024-02-07T21:58:40Z) - Bridging the Gap to Real-World Object-Centric Learning [66.55867830853803]
We show that reconstructing features from models trained in a self-supervised manner is a sufficient training signal for object-centric representations to arise in a fully unsupervised way.
Our approach, DINOSAUR, significantly out-performs existing object-centric learning models on simulated data.
arXiv Detail & Related papers (2022-09-29T15:24:47Z) - Modeling Bounded Rationality in Multi-Agent Simulations Using Rationally
Inattentive Reinforcement Learning [85.86440477005523]
We study more human-like RL agents which incorporate an established model of human-irrationality, the Rational Inattention (RI) model.
RIRL models the cost of cognitive information processing using mutual information.
We show that using RIRL yields a rich spectrum of new equilibrium behaviors that differ from those found under rational assumptions.
arXiv Detail & Related papers (2022-01-18T20:54:00Z) - Learning Complex Spatial Behaviours in ABM: An Experimental
Observational Study [0.0]
This paper explores how Reinforcement Learning can be applied to create emergent agent behaviours.
Running a series of simulations, we demonstrate that agents trained using the novel Proximal Policy optimisation algorithm behave in ways that exhibit properties of real-world intelligent adaptive behaviours.
arXiv Detail & Related papers (2022-01-04T11:56:11Z) - Backprop-Free Reinforcement Learning with Active Neural Generative
Coding [84.11376568625353]
We propose a computational framework for learning action-driven generative models without backpropagation of errors (backprop) in dynamic environments.
We develop an intelligent agent that operates even with sparse rewards, drawing inspiration from the cognitive theory of planning as inference.
The robust performance of our agent offers promising evidence that a backprop-free approach for neural inference and learning can drive goal-directed behavior.
arXiv Detail & Related papers (2021-07-10T19:02:27Z) - What is Going on Inside Recurrent Meta Reinforcement Learning Agents? [63.58053355357644]
Recurrent meta reinforcement learning (meta-RL) agents are agents that employ a recurrent neural network (RNN) for the purpose of "learning a learning algorithm"
We shed light on the internal working mechanisms of these agents by reformulating the meta-RL problem using the Partially Observable Markov Decision Process (POMDP) framework.
arXiv Detail & Related papers (2021-04-29T20:34:39Z) - Explainability in Deep Reinforcement Learning [68.8204255655161]
We review recent works in the direction to attain Explainable Reinforcement Learning (XRL)
In critical situations where it is essential to justify and explain the agent's behaviour, better explainability and interpretability of RL models could help gain scientific insight on the inner workings of what is still considered a black box.
arXiv Detail & Related papers (2020-08-15T10:11:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.