Embodied World Models Emerge from Navigational Task in Open-Ended Environments
- URL: http://arxiv.org/abs/2504.11419v2
- Date: Sun, 27 Apr 2025 08:46:11 GMT
- Title: Embodied World Models Emerge from Navigational Task in Open-Ended Environments
- Authors: Li Jin, Liu Jia,
- Abstract summary: We ask whether a recurrent agent, trained solely by sparse rewards to solve procedurally generated planar mazes, can autonomously internalize metric concepts such as direction, distance and obstacle layout.<n>After training, the agent consistently produces near-optimal paths in unseen mazes, behavior that hints at an underlying spatial model.
- Score: 5.785697934050656
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Spatial reasoning in partially observable environments has often been approached through passive predictive models, yet theories of embodied cognition suggest that genuinely useful representations arise only when perception is tightly coupled to action. Here we ask whether a recurrent agent, trained solely by sparse rewards to solve procedurally generated planar mazes, can autonomously internalize metric concepts such as direction, distance and obstacle layout. After training, the agent consistently produces near-optimal paths in unseen mazes, behavior that hints at an underlying spatial model. To probe this possibility, we cast the closed agent-environment loop as a hybrid dynamical system, identify stable limit cycles in its state space, and characterize behavior with a Ridge Representation that embeds whole trajectories into a common metric space. Canonical correlation analysis exposes a robust linear alignment between neural and behavioral manifolds, while targeted perturbations of the most informative neural dimensions sharply degrade navigation performance. Taken together, these dynamical, representational, and causal signatures show that sustained sensorimotor interaction is sufficient for the spontaneous emergence of compact, embodied world models, providing a principled path toward interpretable and transferable navigation policies.
Related papers
- STGDPM:Vessel Trajectory Prediction with Spatio-Temporal Graph Diffusion Probabilistic Model [0.0]
Vessel trajectory prediction is a critical component for ensuring maritime traffic safety and avoiding collisions.
Due to the inherent uncertainty in vessel behavior, trajectory prediction systems must adopt a multimodal approach to accurately model potential future motion states.
We propose modeling interactions as dynamic graphs, replacing traditional aggregation-based techniques that rely on vessel states.
arXiv Detail & Related papers (2025-03-11T05:50:27Z) - Characterized Diffusion Networks for Enhanced Autonomous Driving Trajectory Prediction [0.6202955567445396]
We present a novel trajectory prediction model for autonomous driving.
Our model enhances the accuracy and reliability of trajectory predictions by incorporating uncertainty estimation and complex agent interactions.
The proposed model showcases strong potential for application in real-world autonomous driving systems.
arXiv Detail & Related papers (2024-11-25T15:03:44Z) - Learning Dynamic Cognitive Map with Autonomous Navigation [8.301959009586861]
We introduce a novel computational model to navigate and map a space rooted in biologically inspired principles.
Our model incorporates a dynamically expanding cognitive map over predicted poses within an Active Inference framework.
Our model achieves this without prior knowledge of observation and world dimensions, underscoring its robustness and efficacy in navigating intricate environments.
arXiv Detail & Related papers (2024-11-13T08:59:53Z) - Evolving Neural Networks Reveal Emergent Collective Behavior from Minimal Agent Interactions [0.0]
We investigate how neural networks evolve to control agents' behavior in a dynamic environment.
Simpler behaviors, such as lane formation and laminar flow, are characterized by more linear network operations.
Specific environmental parameters, such as moderate noise, broader field of view, and lower agent density, promote the evolution of non-linear networks.
arXiv Detail & Related papers (2024-10-25T17:43:00Z) - Self-Supervised Class-Agnostic Motion Prediction with Spatial and Temporal Consistency Regularizations [53.797896854533384]
Class-agnostic motion prediction methods directly predict the motion of the entire point cloud.
While most existing methods rely on fully-supervised learning, the manual labeling of point cloud data is laborious and time-consuming.
We introduce three simple spatial and temporal regularization losses, which facilitate the self-supervised training process effectively.
arXiv Detail & Related papers (2024-03-20T02:58:45Z) - Dynamic planning in hierarchical active inference [0.0]
We refer to the ability of the human brain to infer and impose motor trajectories related to cognitive decisions.
This study focuses on the topic of dynamic planning in active inference.
arXiv Detail & Related papers (2024-02-18T17:32:53Z) - Multi-Agent Dynamic Relational Reasoning for Social Robot Navigation [50.01551945190676]
Social robot navigation can be helpful in various contexts of daily life but requires safe human-robot interactions and efficient trajectory planning.
We propose a systematic relational reasoning approach with explicit inference of the underlying dynamically evolving relational structures.
We demonstrate its effectiveness for multi-agent trajectory prediction and social robot navigation.
arXiv Detail & Related papers (2024-01-22T18:58:22Z) - SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries [94.84458417662407]
We introduce SAFE-SIM, a controllable closed-loop safety-critical simulation framework.
Our approach yields two distinct advantages: 1) generating realistic long-tail safety-critical scenarios that closely reflect real-world conditions, and 2) providing controllable adversarial behavior for more comprehensive and interactive evaluations.
We validate our framework empirically using the nuScenes and nuPlan datasets across multiple planners, demonstrating improvements in both realism and controllability.
arXiv Detail & Related papers (2023-12-31T04:14:43Z) - Interactive Autonomous Navigation with Internal State Inference and
Interactivity Estimation [58.21683603243387]
We propose three auxiliary tasks with relational-temporal reasoning and integrate them into the standard Deep Learning framework.
These auxiliary tasks provide additional supervision signals to infer the behavior patterns other interactive agents.
Our approach achieves robust and state-of-the-art performance in terms of standard evaluation metrics.
arXiv Detail & Related papers (2023-11-27T18:57:42Z) - Inferring Relational Potentials in Interacting Systems [56.498417950856904]
We propose Neural Interaction Inference with Potentials (NIIP) as an alternative approach to discover such interactions.
NIIP assigns low energy to the subset of trajectories which respect the relational constraints observed.
It allows trajectory manipulation, such as interchanging interaction types across separately trained models, as well as trajectory forecasting.
arXiv Detail & Related papers (2023-10-23T00:44:17Z) - STGlow: A Flow-based Generative Framework with Dual Graphormer for
Pedestrian Trajectory Prediction [22.553356096143734]
We propose a novel generative flow based framework with dual graphormer for pedestrian trajectory prediction (STGlow)
Our method can more precisely model the underlying data distribution by optimizing the exact log-likelihood of motion behaviors.
Experimental results on several benchmarks demonstrate that our method achieves much better performance compared to previous state-of-the-art approaches.
arXiv Detail & Related papers (2022-11-21T07:29:24Z) - Stochastic Coherence Over Attention Trajectory For Continuous Learning
In Video Streams [64.82800502603138]
This paper proposes a novel neural-network-based approach to progressively and autonomously develop pixel-wise representations in a video stream.
The proposed method is based on a human-like attention mechanism that allows the agent to learn by observing what is moving in the attended locations.
Our experiments leverage 3D virtual environments and they show that the proposed agents can learn to distinguish objects just by observing the video stream.
arXiv Detail & Related papers (2022-04-26T09:52:31Z) - Domain Knowledge Driven Pseudo Labels for Interpretable Goal-Conditioned
Interactive Trajectory Prediction [29.701029725302586]
We study the joint trajectory prediction problem with the goal-conditioned framework.
We introduce a conditional-variational-autoencoder-based (CVAE) model to explicitly encode different interaction modes into the latent space.
We propose a novel approach to avoid KL vanishing and induce an interpretable interactive latent space with pseudo labels.
arXiv Detail & Related papers (2022-03-28T21:41:21Z) - Neurosymbolic hybrid approach to driver collision warning [64.02492460600905]
There are two main algorithmic approaches to autonomous driving systems.
Deep learning alone has achieved state-of-the-art results in many areas.
But sometimes it can be very difficult to debug if the deep learning model doesn't work.
arXiv Detail & Related papers (2022-03-28T20:29:50Z) - Inference of Affordances and Active Motor Control in Simulated Agents [0.5161531917413706]
We introduce an output-probabilistic, temporally predictive, modular artificial neural network architecture.
We show that our architecture develops latent states that can be interpreted as affordance maps.
In combination with active inference, we show that flexible, goal-directed behavior can be invoked.
arXiv Detail & Related papers (2022-02-23T14:13:04Z) - Backprop-Free Reinforcement Learning with Active Neural Generative
Coding [84.11376568625353]
We propose a computational framework for learning action-driven generative models without backpropagation of errors (backprop) in dynamic environments.
We develop an intelligent agent that operates even with sparse rewards, drawing inspiration from the cognitive theory of planning as inference.
The robust performance of our agent offers promising evidence that a backprop-free approach for neural inference and learning can drive goal-directed behavior.
arXiv Detail & Related papers (2021-07-10T19:02:27Z) - A Spatial-Temporal Attentive Network with Spatial Continuity for
Trajectory Prediction [74.00750936752418]
We propose a novel model named spatial-temporal attentive network with spatial continuity (STAN-SC)
First, spatial-temporal attention mechanism is presented to explore the most useful and important information.
Second, we conduct a joint feature sequence based on the sequence and instant state information to make the generative trajectories keep spatial continuity.
arXiv Detail & Related papers (2020-03-13T04:35:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.