Chain of Methodologies: Scaling Test Time Computation without Training
- URL: http://arxiv.org/abs/2506.06982v1
- Date: Sun, 08 Jun 2025 03:46:50 GMT
- Title: Chain of Methodologies: Scaling Test Time Computation without Training
- Authors: Cong Liu, Jie Wu, Weigang Wu, Xu Chen, Liang Lin, Wei-Shi Zheng,
- Abstract summary: Large Language Models (LLMs) often struggle with complex reasoning tasks due to insufficient in-depth insights in their training data.<n>This paper introduces the Chain of the (CoM) framework that enhances structured thinking by integrating human methodological insights.
- Score: 77.85633949575046
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) often struggle with complex reasoning tasks due to insufficient in-depth insights in their training data, which are typically absent in publicly available documents. This paper introduces the Chain of Methodologies (CoM), an innovative and intuitive prompting framework that enhances structured thinking by integrating human methodological insights, enabling LLMs to tackle complex tasks with extended reasoning. CoM leverages the metacognitive abilities of advanced LLMs, activating systematic reasoning throught user-defined methodologies without explicit fine-tuning. Experiments show that CoM surpasses competitive baselines, demonstrating the potential of training-free prompting methods as robust solutions for complex reasoning tasks and bridging the gap toward human-level reasoning through human-like methodological insights.
Related papers
- Learning Deliberately, Acting Intuitively: Unlocking Test-Time Reasoning in Multimodal LLMs [7.501387372794562]
Deliberate-to-Intuitive reasoning framework (D2I) improves understanding and reasoning ability of multimodal language models.<n>Our method sets deliberate reasoning strategies to enhance modality alignment only through the rule-based format reward during training.<n>While evaluating, the reasoning style shifts to intuitive, which removes deliberate reasoning strategies during training and implicitly reflects the model's acquired abilities in the response.
arXiv Detail & Related papers (2025-07-09T16:25:44Z) - Computational Thinking Reasoning in Large Language Models [69.28428524878885]
Computational Thinking Model (CTM) is a novel framework that incorporates computational thinking paradigms into large language models (LLMs)<n>Live code execution is seamlessly integrated into the reasoning process, allowing CTM to think by computing.<n>CTM outperforms conventional reasoning models and tool-augmented baselines in terms of accuracy, interpretability, and generalizability.
arXiv Detail & Related papers (2025-06-03T09:11:15Z) - A Survey of Slow Thinking-based Reasoning LLMs using Reinforced Learning and Inference-time Scaling Law [29.763080554625216]
This survey explores recent advancements in reasoning large language models (LLMs) designed to mimic "slow thinking"<n>LLMs focus on scaling computational resources dynamically during complex tasks, such as math reasoning, visual reasoning, medical diagnosis, and multi-agent debates.
arXiv Detail & Related papers (2025-05-05T14:14:59Z) - A Survey of Frontiers in LLM Reasoning: Inference Scaling, Learning to Reason, and Agentic Systems [93.8285345915925]
Reasoning is a fundamental cognitive process that enables logical inference, problem-solving, and decision-making.<n>With the rapid advancement of large language models (LLMs), reasoning has emerged as a key capability that distinguishes advanced AI systems.<n>We categorize existing methods along two dimensions: (1) Regimes, which define the stage at which reasoning is achieved; and (2) Architectures, which determine the components involved in the reasoning process.
arXiv Detail & Related papers (2025-04-12T01:27:49Z) - Why Reasoning Matters? A Survey of Advancements in Multimodal Reasoning (v1) [66.51642638034822]
Reasoning is central to human intelligence, enabling structured problem-solving across diverse tasks.<n>Recent advances in large language models (LLMs) have greatly enhanced their reasoning abilities in arithmetic, commonsense, and symbolic domains.<n>This paper offers a concise yet insightful overview of reasoning techniques in both textual and multimodal LLMs.
arXiv Detail & Related papers (2025-04-04T04:04:56Z) - LogiDynamics: Unraveling the Dynamics of Logical Inference in Large Language Model Reasoning [49.58786377307728]
This paper adopts an exploratory approach by introducing a controlled evaluation environment for analogical reasoning.<n>We analyze the comparative dynamics of inductive, abductive, and deductive inference pipelines.<n>We investigate advanced paradigms such as hypothesis selection, verification, and refinement, revealing their potential to scale up logical inference.
arXiv Detail & Related papers (2025-02-16T15:54:53Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTR is a novel neuro-symbolic architecture that provides human-aligned and versatile decision-making.
Our framework extracts and embeds knowledge of ACT-R's internal decision-making process as latent neural representations.
Our experiments on novel Design for Manufacturing tasks show both improved task performance as well as improved grounded decision-making capability.
arXiv Detail & Related papers (2024-08-17T11:49:53Z) - Re-Reading Improves Reasoning in Large Language Models [87.46256176508376]
We introduce a simple, yet general and effective prompting method, Re2, to enhance the reasoning capabilities of off-the-shelf Large Language Models (LLMs)
Unlike most thought-eliciting prompting methods, such as Chain-of-Thought (CoT), Re2 shifts the focus to the input by processing questions twice, thereby enhancing the understanding process.
We evaluate Re2 on extensive reasoning benchmarks across 14 datasets, spanning 112 experiments, to validate its effectiveness and generality.
arXiv Detail & Related papers (2023-09-12T14:36:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.