論文の概要: Robust Sparse Estimation for Gaussians with Optimal Error under Huber Contamination
- arxiv url: http://arxiv.org/abs/2403.10416v1
- Date: Fri, 15 Mar 2024 15:51:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 16:21:13.804948
- Title: Robust Sparse Estimation for Gaussians with Optimal Error under Huber Contamination
- Title(参考訳): ハマー汚染下における最適誤差を持つガウスのロバストスパース推定
- Authors: Ilias Diakonikolas, Daniel M. Kane, Sushrut Karmalkar, Ankit Pensia, Thanasis Pittas,
- Abstract要約: 本研究では,平均推定,PCA,線形回帰に着目したハマー汚染モデルにおけるスパース推定タスクについて検討する。
それぞれのタスクに対して、最適なエラー保証を備えた最初のサンプルと計算効率の良い頑健な推定器を与える。
技術レベルでは、スパース方式における新しい多次元フィルタリング法を開発し、他の応用を見出すことができる。
- 参考スコア(独自算出の注目度): 42.526664955704746
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study Gaussian sparse estimation tasks in Huber's contamination model with a focus on mean estimation, PCA, and linear regression. For each of these tasks, we give the first sample and computationally efficient robust estimators with optimal error guarantees, within constant factors. All prior efficient algorithms for these tasks incur quantitatively suboptimal error. Concretely, for Gaussian robust $k$-sparse mean estimation on $\mathbb{R}^d$ with corruption rate $\epsilon>0$, our algorithm has sample complexity $(k^2/\epsilon^2)\mathrm{polylog}(d/\epsilon)$, runs in sample polynomial time, and approximates the target mean within $\ell_2$-error $O(\epsilon)$. Previous efficient algorithms inherently incur error $\Omega(\epsilon \sqrt{\log(1/\epsilon)})$. At the technical level, we develop a novel multidimensional filtering method in the sparse regime that may find other applications.
- Abstract(参考訳): 本研究では, 平均推定, PCA, 線形回帰に着目したハマー汚染モデルにおけるガウススパース推定タスクについて検討した。
これらの各タスクに対して、定数要素内において最適な誤差を保証する最初のサンプルと計算効率の良い頑健な推定器を与える。
これらのタスクに対する全ての事前の効率的なアルゴリズムは、量的に準最適である。
具体的には、ガウスのロバストな$k$-sparse平均推定値が $\mathbb{R}^d$ の崩壊率 $\epsilon>0$ に対して、我々のアルゴリズムはサンプル複雑性 $(k^2/\epsilon^2)\mathrm{polylog}(d/\epsilon)$ を持ち、サンプル多項式時間で実行し、$\ell_2$-error $O(\epsilon)$ 内でターゲット平均値を近似する。
従来の効率的なアルゴリズムは本質的にエラー$\Omega(\epsilon \sqrt{\log(1/\epsilon)})$を発生させる。
技術レベルでは、スパース方式における新しい多次元フィルタリング法を開発し、他の応用を見出すことができる。
関連論文リスト
- Computational-Statistical Gaps for Improper Learning in Sparse Linear Regression [4.396860522241307]
疎線形回帰の効率的な学習アルゴリズムは, 負のスパイクを持つスパースPCA問題を解くのに有効であることを示す。
我々は,低次および統計的クエリの低い境界を減らしたスパース問題に対して補う。
論文 参考訳(メタデータ) (2024-02-21T19:55:01Z) - Near-Optimal Algorithms for Gaussians with Huber Contamination: Mean
Estimation and Linear Regression [44.13655983242414]
最適誤差保証付きニア・ニア・ニア・リニア時間アルゴリズムの最初のサンプルを設計する。
堅牢な線形回帰のために、サンプル複雑性$n = tildeO(d/epsilon2)$と、ターゲット回帰器を$ell$-$O(epsilon)$で近似するほぼ線形ランタイムを持つ最初のアルゴリズムを与える。
これは、文献のオープンな疑問に答え、最適なエラー保証を達成するための最初のサンプルとタイムアルゴリズムである。
論文 参考訳(メタデータ) (2023-12-04T00:31:16Z) - Efficiently Learning One-Hidden-Layer ReLU Networks via Schur
Polynomials [50.90125395570797]
正方形損失に関して、標準的なガウス分布の下での$k$ReLU活性化の線形結合をPAC学習する問題をmathbbRd$で検討する。
本研究の主な成果は,この学習課題に対して,サンプルおよび計算複雑性が$(dk/epsilon)O(k)$で,epsilon>0$が目標精度である。
論文 参考訳(メタデータ) (2023-07-24T14:37:22Z) - Privately Estimating a Gaussian: Efficient, Robust and Optimal [6.901744415870126]
純微分プライバシー(DP)モデルと近似微分プライバシー(DP)モデルの両方において、ガウス分布をプライベートに推定する効率的なアルゴリズムを提供する。
純粋なDP設定では、未知の$d$次元ガウス分布を任意の全変分誤差まで推定する効率的なアルゴリズムを与える。
平均推定の特別な場合、我々のアルゴリズムは$widetilde O(d1.5)$の最適なサンプル複雑性を達成し、以前の作業から$widetilde O(d1.5)$のバウンドを改善する。
論文 参考訳(メタデータ) (2022-12-15T18:27:39Z) - Robust Sparse Mean Estimation via Sum of Squares [42.526664955704746]
本研究では,高次元スパース平均推定の問題点を,逆数外乱の$epsilon$-fractionの存在下で検討する。
我々のアルゴリズムは、サム・オブ・スクエア(Sum-of-Squares)ベースのアルゴリズムアプローチに従う。
論文 参考訳(メタデータ) (2022-06-07T16:49:54Z) - Clustering Mixture Models in Almost-Linear Time via List-Decodable Mean
Estimation [58.24280149662003]
本稿では,データセットの大部分を敵が破壊できるリストデコタブル平均推定の問題について検討する。
我々は、ほぼ最適な統計的保証を達成するために、リストデコダブル平均推定のための新しいアルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-06-16T03:34:14Z) - List-Decodable Mean Estimation in Nearly-PCA Time [50.79691056481693]
高次元におけるリストデコタブル平均推定の基本的な課題について検討する。
我々のアルゴリズムは、すべての$k = O(sqrtd) cup Omega(d)$に対して$widetildeO(ndk)$で実行されます。
我々のアルゴリズムの変種は、すべての$k$に対してランタイム$widetildeO(ndk)$を持ち、リカバリ保証の$O(sqrtlog k)$ Factorを犠牲にしている。
論文 参考訳(メタデータ) (2020-11-19T17:21:37Z) - Optimal Robust Linear Regression in Nearly Linear Time [97.11565882347772]
学習者が生成モデル$Y = langle X,w* rangle + epsilon$から$n$のサンプルにアクセスできるような高次元頑健な線形回帰問題について検討する。
i) $X$ is L4-L2 hypercontractive, $mathbbE [XXtop]$ has bounded condition number and $epsilon$ has bounded variance, (ii) $X$ is sub-Gaussian with identity second moment and $epsilon$ is
論文 参考訳(メタデータ) (2020-07-16T06:44:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。