On the Generalization of Data-Assisted Control in port-Hamiltonian Systems (DAC-pH)
- URL: http://arxiv.org/abs/2506.07079v1
- Date: Sun, 08 Jun 2025 10:44:01 GMT
- Title: On the Generalization of Data-Assisted Control in port-Hamiltonian Systems (DAC-pH)
- Authors: Mostafa Eslami, Maryam Babazadeh,
- Abstract summary: This paper introduces a hypothetical hybrid control framework for port-Hamiltonian (p$mathcalH$) systems.<n>The system's evolution is split into two parts with fixed topology: Right-Hand Side (RHS)- an intrinsic Hamiltonian flow handling worst-case parametric uncertainties, and Left-Hand Side (LHS)- a dissipative/input flow addressing both structural and parametric uncertainties.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper introduces a hypothetical hybrid control framework for port-Hamiltonian (p$\mathcal{H}$) systems, employing a dynamic decomposition based on Data-Assisted Control (DAC). The system's evolution is split into two parts with fixed topology: Right-Hand Side (RHS)- an intrinsic Hamiltonian flow handling worst-case parametric uncertainties, and Left-Hand Side (LHS)- a dissipative/input flow addressing both structural and parametric uncertainties. A virtual port variable $\Pi$ serves as the interface between these two components. A nonlinear controller manages the intrinsic Hamiltonian flow, determining a desired port control value $\Pi_c$. Concurrently, Reinforcement Learning (RL) is applied to the dissipative/input flow to learn an agent for providing optimal policy in mapping $\Pi_c$ to the actual system input. This hybrid approach effectively manages RHS uncertainties while preserving the system's inherent structure. Key advantages include adjustable performance via LHS controller parameters, enhanced AI explainability and interpretability through the port variable $\Pi$, the ability to guarantee safety and state attainability with hard/soft constraints, reduced complexity in learning hypothesis classes compared to end-to-end solutions, and improved state/parameter estimation using LHS prior knowledge and system Hamiltonian to address partial observability. The paper details the p$\mathcal{H}$ formulation, derives the decomposition, and presents the modular controller architecture. Beyond design, crucial aspects of stability and robustness analysis and synthesis are investigated, paving the way for deeper theoretical investigations. An application example, a pendulum with nonlinear dynamics, is simulated to demonstrate the approach's empirical and phenomenological benefits for future research.
Related papers
- Neural Port-Hamiltonian Models for Nonlinear Distributed Control: An Unconstrained Parametrization Approach [0.0]
Neural Networks (NNs) can be leveraged to parametrize control policies that yield good performance.
NNs' sensitivity to small input changes poses a risk of destabilizing the closed-loop system.
To address these problems, we leverage the framework of port-Hamiltonian systems to design continuous-time distributed control policies.
The effectiveness of the proposed distributed controllers is demonstrated through consensus control of non-holonomic mobile robots.
arXiv Detail & Related papers (2024-11-15T10:44:29Z) - Sub-linear Regret in Adaptive Model Predictive Control [56.705978425244496]
We present STT-MPC (Self-Tuning Tube-based Model Predictive Control), an online oracle that combines the certainty-equivalence principle and polytopic tubes.
We analyze the regret of the algorithm, when compared to an algorithm initially aware of the system dynamics.
arXiv Detail & Related papers (2023-10-07T15:07:10Z) - Finite-time System Identification and Adaptive Control in Autoregressive
Exogenous Systems [79.67879934935661]
We study the problem of system identification and adaptive control of unknown ARX systems.
We provide finite-time learning guarantees for the ARX systems under both open-loop and closed-loop data collection.
arXiv Detail & Related papers (2021-08-26T18:00:00Z) - Probabilistic robust linear quadratic regulators with Gaussian processes [73.0364959221845]
Probabilistic models such as Gaussian processes (GPs) are powerful tools to learn unknown dynamical systems from data for subsequent use in control design.
We present a novel controller synthesis for linearized GP dynamics that yields robust controllers with respect to a probabilistic stability margin.
arXiv Detail & Related papers (2021-05-17T08:36:18Z) - Data-Driven Optimized Tracking Control Heuristic for MIMO Structures: A
Balance System Case Study [8.035375408614776]
The PID is illustrated on a two-input two-output balance system.
It integrates a self-adjusting nonlinear threshold with a neural network to compromise between the desired transient and steady state characteristics.
The neural network is trained upon optimizing a weighted-derivative like objective cost function.
arXiv Detail & Related papers (2021-04-01T02:00:20Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
We propose a novel compound kernel that captures the control-affine nature of the problem.
We show that this resulting optimization problem is convex, and we call it Gaussian Process-based Control Lyapunov Function Second-Order Cone Program (GP-CLF-SOCP)
arXiv Detail & Related papers (2020-11-14T01:27:32Z) - Adaptive Subcarrier, Parameter, and Power Allocation for Partitioned
Edge Learning Over Broadband Channels [69.18343801164741]
partitioned edge learning (PARTEL) implements parameter-server training, a well known distributed learning method, in wireless network.
We consider the case of deep neural network (DNN) models which can be trained using PARTEL by introducing some auxiliary variables.
arXiv Detail & Related papers (2020-10-08T15:27:50Z) - Learning Stabilizing Controllers for Unstable Linear Quadratic
Regulators from a Single Trajectory [85.29718245299341]
We study linear controllers under quadratic costs model also known as linear quadratic regulators (LQR)
We present two different semi-definite programs (SDP) which results in a controller that stabilizes all systems within an ellipsoid uncertainty set.
We propose an efficient data dependent algorithm -- textsceXploration -- that with high probability quickly identifies a stabilizing controller.
arXiv Detail & Related papers (2020-06-19T08:58:57Z) - Adaptive Control and Regret Minimization in Linear Quadratic Gaussian
(LQG) Setting [91.43582419264763]
We propose LqgOpt, a novel reinforcement learning algorithm based on the principle of optimism in the face of uncertainty.
LqgOpt efficiently explores the system dynamics, estimates the model parameters up to their confidence interval, and deploys the controller of the most optimistic model.
arXiv Detail & Related papers (2020-03-12T19:56:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.