Regularized Adaptive Graph Learning for Large-Scale Traffic Forecasting
- URL: http://arxiv.org/abs/2506.07179v1
- Date: Sun, 08 Jun 2025 14:58:27 GMT
- Title: Regularized Adaptive Graph Learning for Large-Scale Traffic Forecasting
- Authors: Kaiqi Wu, Weiyang Kong, Sen Zhang, Yubao Liu, Zitong Chen,
- Abstract summary: We propose a Regularized Adaptive Graph Learning (RAG) model for traffic prediction.<n>We show that RAGL consistently outperforms state-of-the-art methods in terms of prediction accuracy and exhibits competitive computational efficiency.<n> experiments on four large-scale real-world traffic datasets show that RAGL consistently outperforms state-of-the-art methods in terms of prediction accuracy and exhibits competitive computational efficiency.
- Score: 5.212619320601785
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traffic prediction is a critical task in spatial-temporal forecasting with broad applications in travel planning and urban management. Adaptive graph convolution networks have emerged as mainstream solutions due to their ability to learn node embeddings in a data-driven manner and capture complex latent dependencies. However, existing adaptive graph learning methods for traffic forecasting often either ignore the regularization of node embeddings, which account for a significant proportion of model parameters, or face scalability issues from expensive graph convolution operations. To address these challenges, we propose a Regularized Adaptive Graph Learning (RAGL) model. First, we introduce a regularized adaptive graph learning framework that synergizes Stochastic Shared Embedding (SSE) and adaptive graph convolution via a residual difference mechanism, achieving both embedding regularization and noise suppression. Second, to ensure scalability on large road networks, we develop the Efficient Cosine Operator (ECO), which performs graph convolution based on the cosine similarity of regularized embeddings with linear time complexity. Extensive experiments on four large-scale real-world traffic datasets show that RAGL consistently outperforms state-of-the-art methods in terms of prediction accuracy and exhibits competitive computational efficiency.
Related papers
- GraphSparseNet: a Novel Method for Large Scale Traffic Flow Prediction [4.857364765818477]
Recent advancements in deep learning, particularly through GraphNNs, have significantly enhanced the accuracy of these forecasts by complex dynamics.<n>However, GraphSparseNet remains a challenge due to their exponential growth in model complexity.<n>This paper introduces GraphSparseNet, a novel framework designed to improve both accuracy and scalability of GNN traffic-based forecasting models.
arXiv Detail & Related papers (2025-02-27T06:51:20Z) - Graph Pruning Based Spatial and Temporal Graph Convolutional Network with Transfer Learning for Traffic Prediction [0.0]
This study proposes a novel Spatial-temporal Convolutional Network (TL-GPSTGN) based on graph pruning and transfer learning framework.<n>The results demonstrate the exceptional predictive accuracy of TL-GPSTGN on a single dataset, as well as its robust migration performance across different datasets.
arXiv Detail & Related papers (2024-09-25T00:59:23Z) - Accelerating Scalable Graph Neural Network Inference with Node-Adaptive
Propagation [80.227864832092]
Graph neural networks (GNNs) have exhibited exceptional efficacy in a diverse array of applications.
The sheer size of large-scale graphs presents a significant challenge to real-time inference with GNNs.
We propose an online propagation framework and two novel node-adaptive propagation methods.
arXiv Detail & Related papers (2023-10-17T05:03:00Z) - T-GAE: Transferable Graph Autoencoder for Network Alignment [79.89704126746204]
T-GAE is a graph autoencoder framework that leverages transferability and stability of GNNs to achieve efficient network alignment without retraining.
Our experiments demonstrate that T-GAE outperforms the state-of-the-art optimization method and the best GNN approach by up to 38.7% and 50.8%, respectively.
arXiv Detail & Related papers (2023-10-05T02:58:29Z) - Attention-based Dynamic Graph Convolutional Recurrent Neural Network for
Traffic Flow Prediction in Highway Transportation [0.6650227510403052]
Attention-based Dynamic Graph Convolutional Recurrent Neural Network (ADG-N) is proposed to improve traffic flow prediction in highway transportation.
A dedicated gated kernel emphasizing highly relative nodes is introduced on complete graphs to reduce overfitting for graph convolution operations.
arXiv Detail & Related papers (2023-09-13T13:57:21Z) - EasyDGL: Encode, Train and Interpret for Continuous-time Dynamic Graph Learning [92.71579608528907]
This paper aims to design an easy-to-use pipeline (termed as EasyDGL) composed of three key modules with both strong ability fitting and interpretability.
EasyDGL can effectively quantify the predictive power of frequency content that a model learn from the evolving graph data.
arXiv Detail & Related papers (2023-03-22T06:35:08Z) - Efficient Graph Neural Network Inference at Large Scale [54.89457550773165]
Graph neural networks (GNNs) have demonstrated excellent performance in a wide range of applications.
Existing scalable GNNs leverage linear propagation to preprocess the features and accelerate the training and inference procedure.
We propose a novel adaptive propagation order approach that generates the personalized propagation order for each node based on its topological information.
arXiv Detail & Related papers (2022-11-01T14:38:18Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
We propose a bi-level optimization approach for learning the optimal graph structure.
We also explore a low-rank approximation model for further reducing the time complexity.
arXiv Detail & Related papers (2022-05-06T03:37:00Z) - Data-heterogeneity-aware Mixing for Decentralized Learning [63.83913592085953]
We characterize the dependence of convergence on the relationship between the mixing weights of the graph and the data heterogeneity across nodes.
We propose a metric that quantifies the ability of a graph to mix the current gradients.
Motivated by our analysis, we propose an approach that periodically and efficiently optimize the metric.
arXiv Detail & Related papers (2022-04-13T15:54:35Z) - PGCN: Progressive Graph Convolutional Networks for Spatial-Temporal Traffic Forecasting [4.14360329494344]
We propose a novel traffic forecasting framework called Progressive Graph Convolutional Network (PGCN)
PGCN constructs a set of graphs by progressively adapting to online input data during the training and testing phases.
The proposed model achieves state-of-the-art performance with consistency in all datasets.
arXiv Detail & Related papers (2022-02-18T02:15:44Z) - SGCN:Sparse Graph Convolution Network for Pedestrian Trajectory
Prediction [64.16212996247943]
We present a Sparse Graph Convolution Network(SGCN) for pedestrian trajectory prediction.
Specifically, the SGCN explicitly models the sparse directed interaction with a sparse directed spatial graph to capture adaptive interaction pedestrians.
visualizations indicate that our method can capture adaptive interactions between pedestrians and their effective motion tendencies.
arXiv Detail & Related papers (2021-04-04T03:17:42Z) - Adaptive Graph Convolutional Recurrent Network for Traffic Forecasting [47.19400232038575]
We argue that learning node-specific patterns is essential for traffic forecasting while the pre-defined graph is avoidable.
We propose two adaptive modules for enhancing Graph Conal Network (GCN) with new capabilities.
Our experiments on two real-world traffic datasets show AGCRN outperforms state-of-the-art by a significant margin without pre-defined graphs about spatial connections.
arXiv Detail & Related papers (2020-07-06T15:51:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.