Sword and Shield: Uses and Strategies of LLMs in Navigating Disinformation
- URL: http://arxiv.org/abs/2506.07211v1
- Date: Sun, 08 Jun 2025 16:24:11 GMT
- Title: Sword and Shield: Uses and Strategies of LLMs in Navigating Disinformation
- Authors: Gionnieve Lim, Bryan Chen Zhengyu Tan, Kellie Yu Hui Sim, Weiyan Shi, Ming Hui Chew, Ming Shan Hee, Roy Ka-Wei Lee, Simon T. Perrault, Kenny Tsu Wei Choo,
- Abstract summary: Large Language Models (LLMs) can be weaponised to produce sophisticated and persuasive disinformation, yet they also hold promise for enhancing detection and mitigation strategies.<n>This paper investigates the complex dynamics between LLMs and disinformation through a communication game that simulates online forums, inspired by the game Werewolf, with 25 participants.<n>Our findings highlight the varying uses of LLMs depending on the participants' roles and strategies, underscoring the importance of understanding their effectiveness in this context.
- Score: 9.761926423405617
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The emergence of Large Language Models (LLMs) presents a dual challenge in the fight against disinformation. These powerful tools, capable of generating human-like text at scale, can be weaponised to produce sophisticated and persuasive disinformation, yet they also hold promise for enhancing detection and mitigation strategies. This paper investigates the complex dynamics between LLMs and disinformation through a communication game that simulates online forums, inspired by the game Werewolf, with 25 participants. We analyse how Disinformers, Moderators, and Users leverage LLMs to advance their goals, revealing both the potential for misuse and combating disinformation. Our findings highlight the varying uses of LLMs depending on the participants' roles and strategies, underscoring the importance of understanding their effectiveness in this context. We conclude by discussing implications for future LLM development and online platform design, advocating for a balanced approach that empowers users and fosters trust while mitigating the risks of LLM-assisted disinformation.
Related papers
- How does Misinformation Affect Large Language Model Behaviors and Preferences? [37.06385727015972]
Large Language Models (LLMs) have shown remarkable capabilities in knowledge-intensive tasks.<n>We present MisBench, the current largest and most comprehensive benchmark for evaluating LLMs' behavior and knowledge preference toward misinformation.<n> Empirical results reveal that while LLMs demonstrate comparable abilities in discerning misinformation, they still remain susceptible to knowledge conflicts and stylistic variations.
arXiv Detail & Related papers (2025-05-27T17:57:44Z) - NewsInterview: a Dataset and a Playground to Evaluate LLMs' Ground Gap via Informational Interviews [65.35458530702442]
We focus on journalistic interviews, a domain rich in grounding communication and abundant in data.
We curate a dataset of 40,000 two-person informational interviews from NPR and CNN.
LLMs are significantly less likely than human interviewers to use acknowledgements and to pivot to higher-level questions.
arXiv Detail & Related papers (2024-11-21T01:37:38Z) - LLM Echo Chamber: personalized and automated disinformation [0.0]
Large Language Models can spread persuasive, humanlike misinformation at scale, which could influence public opinion.
This study examines these risks, focusing on LLMs ability to propagate misinformation as factual.
To investigate this, we built the LLM Echo Chamber, a controlled digital environment simulating social media chatrooms, where misinformation often spreads.
This setup, evaluated by GPT4 for persuasiveness and harmfulness, sheds light on the ethical concerns surrounding LLMs and emphasizes the need for stronger safeguards against misinformation.
arXiv Detail & Related papers (2024-09-24T17:04:12Z) - LEMMA: Towards LVLM-Enhanced Multimodal Misinformation Detection with External Knowledge Augmentation [58.524237916836164]
We propose LEMMA: LVLM-Enhanced Multimodal Misinformation Detection with External Knowledge Augmentation.
Our method improves the accuracy over the top baseline LVLM by 7% and 13% on Twitter and Fakeddit datasets respectively.
arXiv Detail & Related papers (2024-02-19T08:32:27Z) - Leveraging the Context through Multi-Round Interactions for Jailbreaking Attacks [55.603893267803265]
Large Language Models (LLMs) are susceptible to Jailbreaking attacks.
Jailbreaking attacks aim to extract harmful information by subtly modifying the attack query.
We focus on a new attack form, called Contextual Interaction Attack.
arXiv Detail & Related papers (2024-02-14T13:45:19Z) - Rethinking Machine Unlearning for Large Language Models [85.92660644100582]
We explore machine unlearning in the domain of large language models (LLMs)<n>This initiative aims to eliminate undesirable data influence (e.g., sensitive or illegal information) and the associated model capabilities.
arXiv Detail & Related papers (2024-02-13T20:51:58Z) - Combating Misinformation in the Age of LLMs: Opportunities and
Challenges [21.712051537924136]
The emergence of Large Language Models (LLMs) has great potential to reshape the landscape of combating misinformation.
On the one hand, LLMs bring promising opportunities for combating misinformation due to their profound world knowledge and strong reasoning abilities.
On the other hand, the critical challenge is that LLMs can be easily leveraged to generate deceptive misinformation at scale.
arXiv Detail & Related papers (2023-11-09T00:05:27Z) - Leveraging Word Guessing Games to Assess the Intelligence of Large
Language Models [105.39236338147715]
The paper is inspired by the popular language game Who is Spy''
We develop DEEP to evaluate LLMs' expression and disguising abilities.
We then introduce SpyGame, an interactive multi-agent framework.
arXiv Detail & Related papers (2023-10-31T14:37:42Z) - Let Models Speak Ciphers: Multiagent Debate through Embeddings [84.20336971784495]
We introduce CIPHER (Communicative Inter-Model Protocol Through Embedding Representation) to address this issue.
By deviating from natural language, CIPHER offers an advantage of encoding a broader spectrum of information without any modification to the model weights.
This showcases the superiority and robustness of embeddings as an alternative "language" for communication among LLMs.
arXiv Detail & Related papers (2023-10-10T03:06:38Z) - On the Risk of Misinformation Pollution with Large Language Models [127.1107824751703]
We investigate the potential misuse of modern Large Language Models (LLMs) for generating credible-sounding misinformation.
Our study reveals that LLMs can act as effective misinformation generators, leading to a significant degradation in the performance of Open-Domain Question Answering (ODQA) systems.
arXiv Detail & Related papers (2023-05-23T04:10:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.