論文の概要: SDE-SQL: Enhancing Text-to-SQL Generation in Large Language Models via Self-Driven Exploration with SQL Probes
- arxiv url: http://arxiv.org/abs/2506.07245v2
- Date: Thu, 19 Jun 2025 04:10:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-23 14:57:52.212906
- Title: SDE-SQL: Enhancing Text-to-SQL Generation in Large Language Models via Self-Driven Exploration with SQL Probes
- Title(参考訳): SDE-SQL: SQLプローブによる自己駆動探索による大規模言語モデルにおけるテキストからSQL生成の強化
- Authors: Wenxuan Xie, Yaxun Dai, Wenhao Jiang,
- Abstract要約: 本研究では,大規模言語モデルによる推論中のデータベースの自己駆動探索を可能にするフレームワークであるSDE-を提案する。
従来の方法とは異なり、SDE-はin-contextのデモとして質問コンテキストペアに頼ることなく、ゼロショット設定で動作する。
- 参考スコア(独自算出の注目度): 10.672822970425404
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in large language models (LLMs) have significantly improved performance on the Text-to-SQL task. However, prior approaches typically rely on static, pre-processed database information provided at inference time, which limits the model's ability to fully understand the database contents. Without dynamic interaction, LLMs are constrained to fixed, human-provided context and cannot autonomously explore the underlying data. To address this limitation, we propose SDE-SQL, a framework that enables large language models to perform self-driven exploration of databases during inference. This is accomplished by generating and executing SQL probes, which allow the model to actively retrieve information from the database and iteratively update its understanding of the data. Unlike prior methods, SDE-SQL operates in a zero-shot setting, without relying on any question-SQL pairs as in-context demonstrations. When evaluated on the BIRD benchmark with Qwen2.5-72B-Instruct, SDE-SQL achieves an 8.02% relative improvement in execution accuracy over the vanilla Qwen2.5-72B-Instruct baseline, establishing a new state-of-the-art among methods based on open-source models without supervised fine-tuning (SFT) or model ensembling. Moreover, with SFT, the performance of SDE-SQL can be further enhanced, yielding an additional 0.52% improvement.
- Abstract(参考訳): 大規模言語モデル(LLM)の最近の進歩は、Text-to-SQLタスクのパフォーマンスを大幅に改善した。
しかし、従来のアプローチは通常、推論時に提供される静的で事前処理されたデータベース情報に依存しており、データベースの内容を完全に理解する能力は制限される。
動的相互作用がなければ、LLMは固定された人間が提供するコンテキストに制約され、基礎となるデータを自律的に探索することはできない。
この制限に対処するため,大規模言語モデルによる推論時のデータベースの自己駆動探索を可能にするフレームワークであるSDE-SQLを提案する。
これはSQLプローブの生成と実行によって実現され、モデルがデータベースから情報を積極的に取得し、データの理解を反復的に更新することができる。
従来の方法とは異なり、SDE-SQLは、インコンテキストのデモとして質問-SQLペアに頼ることなく、ゼロショット設定で動作する。
Qwen2.5-72B-InstructでBIRDベンチマークで評価すると、SDE-SQLは、Vanilla Qwen2.5-72B-Instructベースラインよりも8.02%の相対的な実行精度の向上を実現し、教師付き微調整(SFT)やモデルアンサンブルを伴わないオープンソースのモデルに基づく新しい最先端の手法を確立した。
さらに、SFTでは、SDE-SQLの性能をさらに向上し、0.52%の改善が期待できる。
関連論文リスト
- RAISE: Reasoning Agent for Interactive SQL Exploration [47.77323087050061]
本稿では,スキーマリンク,クエリ生成,反復的改善を1つのエンドツーエンドコンポーネントに統一する新しいフレームワークを提案する。
本手法は、不慣れなデータベースを扱う際に、人間がどう答えるかをエミュレートする。
論文 参考訳(メタデータ) (2025-06-02T03:07:08Z) - Bridging the Gap: Enabling Natural Language Queries for NoSQL Databases through Text-to-NoSQL Translation [25.638927795540454]
自然言語クエリをアクセス可能なクエリに変換することを目的としたText-to-Noタスクを導入する。
この分野での研究を促進するために、我々はTEND(Text-to-Noデータセットのショートインターフェース)という、このタスクのための大規模かつオープンソースのデータセットをリリースした。
また,SLM(Small Language Model)支援とRAG(Retrieval-augmented Generation)支援の多段階フレームワークSMARTを設計した。
論文 参考訳(メタデータ) (2025-02-16T17:01:48Z) - Solid-SQL: Enhanced Schema-linking based In-context Learning for Robust Text-to-SQL [13.122218546167463]
大規模言語モデル(LLM)は、テキスト・ツー・システムの性能を大幅に改善した。
多くのSOTA(State-of-the-art)アプローチは、システムの堅牢性の重要な側面を見落としている。
論文 参考訳(メタデータ) (2024-12-17T04:22:22Z) - Learning from Imperfect Data: Towards Efficient Knowledge Distillation of Autoregressive Language Models for Text-to-SQL [83.99974309930072]
知識蒸留(KD)は、より大規模な教師モデルをより小さな学生モデルに蒸留することを目的とした一般的な手法である。
我々は,不完全なデータ,すなわちKIDを用いてKDを改善することを提案する。
KIDは、すべてのモデルタイプとサイズで一貫した、重要なパフォーマンス向上を達成するだけでなく、トレーニング効率を効果的に向上する。
論文 参考訳(メタデータ) (2024-10-15T07:51:00Z) - Enhancing LLM Fine-tuning for Text-to-SQLs by SQL Quality Measurement [1.392448435105643]
Text-to-sにより、専門家でないユーザは、自然言語クエリを使用してデータベースから要求された情報を取得することができる。
GPT4やT5のような現在の最先端(SOTA)モデルは、BIRDのような大規模ベンチマークで素晴らしいパフォーマンスを示している。
本稿では,テキスト・ツー・ス・パフォーマンスを向上させるためにSQL Qualityのみを必要とする新しい手法を提案する。
論文 参考訳(メタデータ) (2024-10-02T17:21:51Z) - Synthesizing Text-to-SQL Data from Weak and Strong LLMs [68.69270834311259]
オープンソースとクローズドソースの大規模言語モデル(LLM)の能力ギャップは、テキスト・トゥ・タスクにおいて依然として課題である。
より大規模で強力なモデルによって生成されたデータと、より小さく、不整合なモデルによって生成されたエラー情報データを組み合わせた合成データアプローチを導入する。
論文 参考訳(メタデータ) (2024-08-06T15:40:32Z) - DFIN-SQL: Integrating Focused Schema with DIN-SQL for Superior Accuracy
in Large-Scale Databases [0.0]
本稿では,DIN-composed (Decomposed-In-Context) の革新的な拡張であるDFINを紹介する。
DFINは、不正確な主要なソースであるスキーマリンクエラーに対処することで、テキストからコンポジションへの変換を強化する。
実世界の挑戦的なベンチマークであるBIRDデータセットの評価では、DFINは効率だけでなく精度も向上し、51.69のスコアが得られた。
論文 参考訳(メタデータ) (2024-03-01T07:14:45Z) - SQL-PaLM: Improved Large Language Model Adaptation for Text-to-SQL (extended) [53.95151604061761]
本稿では,大規模言語モデル(LLM)を用いたテキスト・ツー・フィルタリングのフレームワークを提案する。
数発のプロンプトで、実行ベースのエラー解析による一貫性復号化の有効性について検討する。
命令の微調整により、チューニングされたLLMの性能に影響を及ぼす重要なパラダイムの理解を深める。
論文 参考訳(メタデータ) (2023-05-26T21:39:05Z) - UNITE: A Unified Benchmark for Text-to-SQL Evaluation [72.72040379293718]
テキスト・ツー・ドメイン・システムのためのUNIfiedベンチマークを導入する。
公開されているテキストからドメインへのデータセットと29Kデータベースで構成されている。
広く使われているSpiderベンチマークと比較すると、SQLパターンの3倍の増加が紹介されている。
論文 参考訳(メタデータ) (2023-05-25T17:19:52Z) - Wav2SQL: Direct Generalizable Speech-To-SQL Parsing [55.10009651476589]
Speech-to-Spider (S2Spider) は、与えられたデータベースに対する音声質問をsqlクエリに変換することを目的としている。
ケースドシステム間の誤り合成を回避した,最初の直接音声-話者パーシングモデルWav2を提案する。
実験結果から,Wav2は誤差混成を回避し,ベースラインの精度を最大2.5%向上させることで最先端の結果が得られることがわかった。
論文 参考訳(メタデータ) (2023-05-21T19:26:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。