RADAR: Recall Augmentation through Deferred Asynchronous Retrieval
- URL: http://arxiv.org/abs/2506.07261v1
- Date: Sun, 08 Jun 2025 19:21:46 GMT
- Title: RADAR: Recall Augmentation through Deferred Asynchronous Retrieval
- Authors: Amit Jaspal, Qian Dang, Ajantha Ramineni,
- Abstract summary: We introduce Recall Augmentation through Deferred Asynchronous Retrieval (RADAR)<n>RADAR pre-ranks a significantly larger candidate set for users using the full complexity ranking model.<n>RADAR significantly boosts recall by effectively combining a larger retrieved candidate set with a more powerful ranking model.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern large-scale recommender systems employ multi-stage ranking funnel (Retrieval, Pre-ranking, Ranking) to balance engagement and computational constraints (latency, CPU). However, the initial retrieval stage, often relying on efficient but less precise methods like K-Nearest Neighbors (KNN), struggles to effectively surface the most engaging items from billion-scale catalogs, particularly distinguishing highly relevant and engaging candidates from merely relevant ones. We introduce Recall Augmentation through Deferred Asynchronous Retrieval (RADAR), a novel framework that leverages asynchronous, offline computation to pre-rank a significantly larger candidate set for users using the full complexity ranking model. These top-ranked items are stored and utilized as a high-quality retrieval source during online inference, bypassing online retrieval and pre-ranking stages for these candidates. We demonstrate through offline experiments that RADAR significantly boosts recall (2X Recall@200 vs DNN retrieval baseline) by effectively combining a larger retrieved candidate set with a more powerful ranking model. Online A/B tests confirm a +0.8% lift in topline engagement metrics, validating RADAR as a practical and effective method to improve recommendation quality under strict online serving constraints.
Related papers
- Optimizing Legal Document Retrieval in Vietnamese with Semi-Hard Negative Mining [4.233176571117095]
This paper presents a two-stage framework consisting of Retrieval and Re-ranking to enhance legal document retrieval efficiency and accuracy.<n>Key innovations include the introduction of the Exist@m metric to evaluate retrieval effectiveness and the use of semi-hard negatives to mitigate training bias.<n>The framework demonstrates that optimized data processing, tailored loss functions, and balanced negative sampling are pivotal for building robust retrieval-augmented systems in legal contexts.
arXiv Detail & Related papers (2025-07-19T13:30:14Z) - Reinforced Informativeness Optimization for Long-Form Retrieval-Augmented Generation [77.10390725623125]
Long-form question answering (LFQA) presents unique challenges for large language models.<n>RioRAG is a novel reinforcement learning framework that advances long-form RAG through reinforced informativeness optimization.
arXiv Detail & Related papers (2025-05-27T07:34:41Z) - Breaking the Lens of the Telescope: Online Relevance Estimation over Large Retrieval Sets [14.494301139974455]
We propose a novel paradigm for re-ranking called online relevance estimation.<n>Online relevance estimation continuously updates relevance estimates for a query throughout the ranking process.<n>We validate our approach on TREC benchmarks under two scenarios: hybrid retrieval and adaptive retrieval.
arXiv Detail & Related papers (2025-04-12T22:05:50Z) - Lightweight and Direct Document Relevance Optimization for Generative Information Retrieval [49.669503570350166]
Generative information retrieval (GenIR) is a promising neural retrieval paradigm that formulates document retrieval as a document identifier (docid) generation task.<n>Existing GenIR models suffer from token-level misalignment, where models trained to predict the next token often fail to capture document-level relevance effectively.<n>We propose direct document relevance optimization (DDRO), which aligns token-level docid generation with document-level relevance estimation through direct optimization via pairwise ranking.
arXiv Detail & Related papers (2025-04-07T15:27:37Z) - Rank-R1: Enhancing Reasoning in LLM-based Document Rerankers via Reinforcement Learning [76.50690734636477]
We introduce Rank-R1, a novel LLM-based reranker that performs reasoning over both the user query and candidate documents before performing the ranking task.<n>Our experiments on the TREC DL and BRIGHT datasets show that Rank-R1 is highly effective, especially for complex queries.
arXiv Detail & Related papers (2025-03-08T03:14:26Z) - Optimizing Preference Alignment with Differentiable NDCG Ranking [9.594183083553245]
Recent studies have uncovered a substantial discrepancy between the theoretical aspirations of preference learning and its real-world results.
This paper introduces underlineDirect underlineRanking underlinePreference underlineOptimization (O), a novel method that views human preference alignment as a Learning-to-Rank task.
arXiv Detail & Related papers (2024-10-17T08:54:57Z) - A Thorough Performance Benchmarking on Lightweight Embedding-based Recommender Systems [67.52782366565658]
State-of-the-art recommender systems (RSs) depend on categorical features, which ecoded by embedding vectors, resulting in excessively large embedding tables.<n>Despite the prosperity of lightweight embedding-based RSs, a wide diversity is seen in evaluation protocols.<n>This study investigates various LERS' performance, efficiency, and cross-task transferability via a thorough benchmarking process.
arXiv Detail & Related papers (2024-06-25T07:45:00Z) - FIRST: Faster Improved Listwise Reranking with Single Token Decoding [56.727761901751194]
First, we introduce FIRST, a novel listwise LLM reranking approach leveraging the output logits of the first generated identifier to directly obtain a ranked ordering of the candidates.
Empirical results demonstrate that FIRST accelerates inference by 50% while maintaining a robust ranking performance with gains across the BEIR benchmark.
Our results show that LLM rerankers can provide a stronger distillation signal compared to cross-encoders, yielding substantial improvements in retriever recall after relevance feedback.
arXiv Detail & Related papers (2024-06-21T21:27:50Z) - LIRE: listwise reward enhancement for preference alignment [27.50204023448716]
We propose a gradient-based reward optimization approach that incorporates the offline rewards of multiple responses into a streamlined listwise framework.
LIRE is straightforward to implement, requiring minimal parameter tuning, and seamlessly aligns with the pairwise paradigm.
Our experiments demonstrate that LIRE consistently outperforms existing methods across several benchmarks on dialogue and summarization tasks.
arXiv Detail & Related papers (2024-05-22T10:21:50Z) - A Reproducibility Study of PLAID [25.86500025007641]
We compare PLAID with an important baseline missing from the paper: re-ranking a lexical system.
We find that applying ColBERTv2 as a re-ranker atop an initial pool of BM25 results provides better efficiency-effectiveness trade-offs in low-latency settings.
We find that recently proposed modifications to re-ranking that pull in the neighbors of top-scoring documents overcome this limitation.
arXiv Detail & Related papers (2024-04-23T12:46:53Z) - AliExpress Learning-To-Rank: Maximizing Online Model Performance without
Going Online [60.887637616379926]
This paper proposes an evaluator-generator framework for learning-to-rank.
It consists of an evaluator that generalizes to evaluate recommendations involving the context, and a generator that maximizes the evaluator score by reinforcement learning.
Our method achieves a significant improvement in terms of Conversion Rate (CR) over the industrial-level fine-tuned model in online A/B tests.
arXiv Detail & Related papers (2020-03-25T10:27:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.