論文の概要: Hierarchical Scoring with 3D Gaussian Splatting for Instance Image-Goal Navigation
- arxiv url: http://arxiv.org/abs/2506.07338v1
- Date: Mon, 09 Jun 2025 00:58:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-10 16:33:10.770717
- Title: Hierarchical Scoring with 3D Gaussian Splatting for Instance Image-Goal Navigation
- Title(参考訳): 画像ゴールナビゲーションのための3次元ガウス平滑化による階層的スコーリング
- Authors: Yijie Deng, Shuaihang Yuan, Geeta Chandra Raju Bethala, Anthony Tzes, Yu-Shen Liu, Yi Fang,
- Abstract要約: インスタンスイメージゴールナビゲーション(IIN)では、任意の視点から捉えた参照画像に描かれた対象物や場所を特定し、ナビゲートする必要がある。
ターゲットマッチングのための最適視点を推定する階層的スコアリングパラダイムを備えた新しいIINフレームワークを提案する。
- 参考スコア(独自算出の注目度): 27.040017548286812
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Instance Image-Goal Navigation (IIN) requires autonomous agents to identify and navigate to a target object or location depicted in a reference image captured from any viewpoint. While recent methods leverage powerful novel view synthesis (NVS) techniques, such as three-dimensional Gaussian splatting (3DGS), they typically rely on randomly sampling multiple viewpoints or trajectories to ensure comprehensive coverage of discriminative visual cues. This approach, however, creates significant redundancy through overlapping image samples and lacks principled view selection, substantially increasing both rendering and comparison overhead. In this paper, we introduce a novel IIN framework with a hierarchical scoring paradigm that estimates optimal viewpoints for target matching. Our approach integrates cross-level semantic scoring, utilizing CLIP-derived relevancy fields to identify regions with high semantic similarity to the target object class, with fine-grained local geometric scoring that performs precise pose estimation within promising regions. Extensive evaluations demonstrate that our method achieves state-of-the-art performance on simulated IIN benchmarks and real-world applicability.
- Abstract(参考訳): インスタンスイメージゴールナビゲーション(IIN)では、任意の視点から捉えた参照画像に描かれた対象物や場所を特定し、ナビゲートする必要がある。
近年の手法では、3次元ガウススプラッティング(3DGS)のような強力な新しいビュー合成(NVS)技術が採用されているが、一般的には識別的視覚的手がかりの包括的カバレッジを確保するために、ランダムに複数の視点や軌跡をサンプリングする。
しかし、このアプローチは画像サンプルの重複による大きな冗長性をもたらし、原則的なビュー選択が欠如し、レンダリングと比較のオーバーヘッドが大幅に増大する。
本稿では,目標マッチングのための最適視点を推定する階層的スコアリングパラダイムを備えた新しいIINフレームワークを提案する。
提案手法は,CLIPから派生した関連フィールドを用いて,対象オブジェクトクラスと高い意味論的類似性を持つ領域を識別し,将来性のある領域内で正確なポーズ推定を行う,詳細な局所幾何的スコアリングを行う。
シミュレーションしたIINベンチマークと実世界の応用性を用いて,本手法の最先端性能を実証した。
関連論文リスト
- InstanceGaussian: Appearance-Semantic Joint Gaussian Representation for 3D Instance-Level Perception [17.530797215534456]
3Dシーンの理解は、自動運転、ロボティクス、拡張現実の応用において重要な研究領域となっている。
本稿では,インスタンスを適応的に集約しながら外観や意味的特徴を共同学習する InstanceGaussian を提案する。
提案手法は,カテゴリーに依存しないオープンボキャブラリ3次元点分割における最先端性能を実現する。
論文 参考訳(メタデータ) (2024-11-28T16:08:36Z) - FocusTune: Tuning Visual Localization through Focus-Guided Sampling [61.79440120153917]
FocusTuneは、視覚的ローカライゼーションアルゴリズムの性能を改善するための焦点誘導サンプリング技術である。
ACEの魅力ある低ストレージと計算要求を維持しながら、FocusTuneは最先端のパフォーマンスを改善したり、一致させたりします。
ハイパフォーマンスとローコンピュートとストレージの要件の組み合わせは、特にモバイルロボティクスや拡張現実といった分野のアプリケーションには有望だ。
論文 参考訳(メタデータ) (2023-11-06T04:58:47Z) - Quantity-Aware Coarse-to-Fine Correspondence for Image-to-Point Cloud
Registration [4.954184310509112]
Image-to-point cloud registrationは、RGBイメージと参照ポイントクラウドの間の相対カメラのポーズを決定することを目的としている。
個々の点と画素とのマッチングは、モダリティギャップによって本質的に曖昧である。
本稿では,局所点集合と画素パッチ間の量認識対応を捉える枠組みを提案する。
論文 参考訳(メタデータ) (2023-07-14T03:55:54Z) - DCN-T: Dual Context Network with Transformer for Hyperspectral Image
Classification [109.09061514799413]
複雑な撮像条件による空間変動のため,HSI分類は困難である。
本稿では,HSIを高品質な三スペクトル画像に変換する三スペクトル画像生成パイプラインを提案する。
提案手法は,HSI分類における最先端手法よりも優れている。
論文 参考訳(メタデータ) (2023-04-19T18:32:52Z) - Collaborative Propagation on Multiple Instance Graphs for 3D Instance
Segmentation with Single-point Supervision [63.429704654271475]
本稿では,1つのオブジェクトを1つのポイントでラベル付けするだけでよい,弱教師付き手法RWSegを提案する。
これらの疎いラベルにより、セマンティック情報とインスタンス情報を伝達する2つの分岐を持つ統一的なフレームワークを導入する。
具体的には、異なるインスタンスグラフ間の競合を促進するクロスグラフ競合ランダムウォークス(CRW)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-08-10T02:14:39Z) - PointInst3D: Segmenting 3D Instances by Points [136.7261709896713]
本稿では,ポイント単位の予測方式で機能する,完全畳み込み型3Dポイントクラウドインスタンスセグメンテーション手法を提案する。
その成功の鍵は、各サンプルポイントに適切なターゲットを割り当てることにある。
提案手法はScanNetとS3DISのベンチマークで有望な結果が得られる。
論文 参考訳(メタデータ) (2022-04-25T02:41:46Z) - Fusing Local Similarities for Retrieval-based 3D Orientation Estimation
of Unseen Objects [70.49392581592089]
我々は,モノクロ画像から未確認物体の3次元配向を推定する作業に取り組む。
我々は検索ベースの戦略に従い、ネットワークがオブジェクト固有の特徴を学習するのを防ぐ。
また,LineMOD,LineMOD-Occluded,T-LESSのデータセットを用いた実験により,本手法が従来の手法よりもはるかに優れた一般化をもたらすことが示された。
論文 参考訳(メタデータ) (2022-03-16T08:53:00Z) - Unsupervised Learning on 3D Point Clouds by Clustering and Contrasting [11.64827192421785]
教師なし表現学習は、人間の介入なしに機能を自動抽出するための有望な方向である。
本稿では、ポイントワイドおよびグローバルな特徴の学習を行うために、textbfConClu という、一般的な教師なしアプローチを提案する。
論文 参考訳(メタデータ) (2022-02-05T12:54:17Z) - Re-rank Coarse Classification with Local Region Enhanced Features for
Fine-Grained Image Recognition [22.83821575990778]
そこで我々は,Top1の精度を向上させるため,TopN分類結果を局所的に拡張した埋め込み機能を用いて再評価した。
より効果的なセマンティクスグローバル機能を学ぶために、我々は、自動構築された階層的カテゴリ構造上のマルチレベル損失をデザインする。
本手法は,cub-200-2011,stanford cars,fgvc aircraftの3つのベンチマークで最新性能を実現する。
論文 参考訳(メタデータ) (2021-02-19T11:30:25Z) - PC-RGNN: Point Cloud Completion and Graph Neural Network for 3D Object
Detection [57.49788100647103]
LiDARベースの3Dオブジェクト検出は、自動運転にとって重要なタスクです。
現在のアプローチでは、遠方および閉ざされた物体の偏りと部分的な点雲に苦しむ。
本稿では,この課題を2つの解決法で解決する新しい二段階アプローチ,pc-rgnnを提案する。
論文 参考訳(メタデータ) (2020-12-18T18:06:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。