Human Side of Smart Contract Fuzzing: An Empirical Study
- URL: http://arxiv.org/abs/2506.07389v1
- Date: Mon, 09 Jun 2025 03:25:14 GMT
- Title: Human Side of Smart Contract Fuzzing: An Empirical Study
- Authors: Guanming Qiao, Partha Protim Paul,
- Abstract summary: This study investigates the challenges practitioners face when adopting SC fuzzing tools.<n>We categorize these challenges into a taxonomy based on their nature and occurrence within the SC fuzzing workflow.<n>Our findings reveal domain-specific ease-of-use and usefulness challenges, including technical issues with blockchain emulation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Smart contract (SC) fuzzing is a critical technique for detecting vulnerabilities in blockchain applications. However, its adoption remains challenging for practitioners due to fundamental differences between SCs and traditional software systems. In this study, we investigate the challenges practitioners face when adopting SC fuzzing tools by conducting an inductive content analysis of 381 GitHub issues from two widely used SC fuzzers: Echidna and Foundry. Furthermore, we conducted a user study to examine how these challenges affect different practitioner groups, SC developers, and traditional software security professionals, and identify strategies practitioners use to overcome them. We systematically categorize these challenges into a taxonomy based on their nature and occurrence within the SC fuzzing workflow. Our findings reveal domain-specific ease-of-use and usefulness challenges, including technical issues with blockchain emulation, and human issues with a lack of accessible documentation and process automation. Our results provide actionable insights for tool developers and researchers, guiding future improvements in SC fuzzer tool design.
Related papers
- LLAMA: Multi-Feedback Smart Contract Fuzzing Framework with LLM-Guided Seed Generation [56.84049855266145]
We propose a Multi-feedback Smart Contract Fuzzing framework (LLAMA) that integrates evolutionary mutation strategies, and hybrid testing techniques.<n>LLAMA achieves 91% instruction coverage and 90% branch coverage, while detecting 132 out of 148 known vulnerabilities.<n>These results highlight LLAMA's effectiveness, adaptability, and practicality in real-world smart contract security testing scenarios.
arXiv Detail & Related papers (2025-07-16T09:46:58Z) - Decompiling Smart Contracts with a Large Language Model [51.49197239479266]
Despite Etherscan's 78,047,845 smart contracts deployed on (as of May 26, 2025), a mere 767,520 ( 1%) are open source.<n>This opacity necessitates the automated semantic analysis of on-chain smart contract bytecode.<n>We introduce a pioneering decompilation pipeline that transforms bytecode into human-readable and semantically faithful Solidity code.
arXiv Detail & Related papers (2025-06-24T13:42:59Z) - Demystifying OS Kernel Fuzzing with a Novel Taxonomy [42.56259589772939]
We present the first systematic study dedicated to OS kernel fuzzing.<n>It begins by summarizing the progress of 99 academic studies from top-tier venues between 2017 and 2024.<n>We introduce a stage-based fuzzing model and a novel fuzzing taxonomy that highlights nine core functionalities unique to kernel fuzzing.
arXiv Detail & Related papers (2025-01-27T16:03:14Z) - ContractTrace: Retracing Smart Contract Versions for Security Analyses [4.126275271359132]
We introduce ContractTrace, an automated infrastructure that accurately identifies and links versions of smart contracts into coherent lineages.<n>This capability is essential for understanding vulnerability propagation patterns and evaluating the effectiveness of security patches in blockchain environments.
arXiv Detail & Related papers (2024-12-30T11:10:22Z) - Analyzing Challenges in Deployment of the SLSA Framework for Software Supply Chain Security [16.59946110914069]
This study analyzed 1,523 SLSA-related issues extracted from 233 GitHub repositories.<n>We identified four significant challenges and five suggested adoption strategies.<n>The suggested strategies include streamlining provenance generation processes, improving the SLSA verification process, and providing specific and detailed documentation.
arXiv Detail & Related papers (2024-09-08T07:54:16Z) - Vulnerability Detection in Ethereum Smart Contracts via Machine Learning: A Qualitative Analysis [0.0]
We analyze the state of the art in machine-learning vulnerability detection for smart contracts.
We discuss best practices to enhance the accuracy, scope, and efficiency of vulnerability detection in smart contracts.
arXiv Detail & Related papers (2024-07-26T10:09:44Z) - Contractual Reinforcement Learning: Pulling Arms with Invisible Hands [68.77645200579181]
We propose a theoretical framework for aligning economic interests of different stakeholders in the online learning problems through contract design.
For the planning problem, we design an efficient dynamic programming algorithm to determine the optimal contracts against the far-sighted agent.
For the learning problem, we introduce a generic design of no-regret learning algorithms to untangle the challenges from robust design of contracts to the balance of exploration and exploitation.
arXiv Detail & Related papers (2024-07-01T16:53:00Z) - Assaying on the Robustness of Zero-Shot Machine-Generated Text Detectors [57.7003399760813]
We explore advanced Large Language Models (LLMs) and their specialized variants, contributing to this field in several ways.
We uncover a significant correlation between topics and detection performance.
These investigations shed light on the adaptability and robustness of these detection methods across diverse topics.
arXiv Detail & Related papers (2023-12-20T10:53:53Z) - A Discrepancy Aware Framework for Robust Anomaly Detection [51.710249807397695]
We present a Discrepancy Aware Framework (DAF), which demonstrates robust performance consistently with simple and cheap strategies.
Our method leverages an appearance-agnostic cue to guide the decoder in identifying defects, thereby alleviating its reliance on synthetic appearance.
Under the simple synthesis strategies, it outperforms existing methods by a large margin. Furthermore, it also achieves the state-of-the-art localization performance.
arXiv Detail & Related papers (2023-10-11T15:21:40Z) - Vulnerability and Transaction behavior based detection of Malicious
Smart Contracts [3.646526715728388]
We study the correlation between malicious activities and the vulnerabilities present in Smart Contracts (SCs)
We develop and study the feasibility of a scoring mechanism that corresponds to the severity of the vulnerabilities present in SCs.
We analyze the utility of severity score towards detection of suspicious SCs using unsupervised machine learning (ML) algorithms.
arXiv Detail & Related papers (2021-06-25T04:25:23Z) - Inspect, Understand, Overcome: A Survey of Practical Methods for AI
Safety [54.478842696269304]
The use of deep neural networks (DNNs) in safety-critical applications is challenging due to numerous model-inherent shortcomings.
In recent years, a zoo of state-of-the-art techniques aiming to address these safety concerns has emerged.
Our paper addresses both machine learning experts and safety engineers.
arXiv Detail & Related papers (2021-04-29T09:54:54Z) - ESCORT: Ethereum Smart COntRacTs Vulnerability Detection using Deep
Neural Network and Transfer Learning [80.85273827468063]
Existing machine learning-based vulnerability detection methods are limited and only inspect whether the smart contract is vulnerable.
We propose ESCORT, the first Deep Neural Network (DNN)-based vulnerability detection framework for smart contracts.
We show that ESCORT achieves an average F1-score of 95% on six vulnerability types and the detection time is 0.02 seconds per contract.
arXiv Detail & Related papers (2021-03-23T15:04:44Z) - A black-box adversarial attack for poisoning clustering [78.19784577498031]
We propose a black-box adversarial attack for crafting adversarial samples to test the robustness of clustering algorithms.
We show that our attacks are transferable even against supervised algorithms such as SVMs, random forests, and neural networks.
arXiv Detail & Related papers (2020-09-09T18:19:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.