Beyond Jailbreaks: Revealing Stealthier and Broader LLM Security Risks Stemming from Alignment Failures
- URL: http://arxiv.org/abs/2506.07402v1
- Date: Mon, 09 Jun 2025 03:52:43 GMT
- Title: Beyond Jailbreaks: Revealing Stealthier and Broader LLM Security Risks Stemming from Alignment Failures
- Authors: Yukai Zhou, Sibei Yang, Wenjie Wang,
- Abstract summary: Large language models (LLMs) are increasingly deployed in real-world applications, raising concerns about their security.<n>While jailbreak attacks highlight failures under overtly harmful queries, they overlook a critical risk: incorrectly answering harmless-looking inputs can be dangerous and cause real-world harm (Implicit Harm)<n>We systematically reformulate the LLM risk landscape through a structured quadrant perspective based on output factuality and input harmlessness, uncovering a high-risk region.
- Score: 17.9033567125575
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) are increasingly deployed in real-world applications, raising concerns about their security. While jailbreak attacks highlight failures under overtly harmful queries, they overlook a critical risk: incorrectly answering harmless-looking inputs can be dangerous and cause real-world harm (Implicit Harm). We systematically reformulate the LLM risk landscape through a structured quadrant perspective based on output factuality and input harmlessness, uncovering an overlooked high-risk region. To investigate this gap, we propose JailFlipBench, a benchmark aims to capture implicit harm, spanning single-modal, multimodal, and factual extension scenarios with diverse evaluation metrics. We further develop initial JailFlip attack methodologies and conduct comprehensive evaluations across multiple open-source and black-box LLMs, show that implicit harm present immediate and urgent real-world risks, calling for broader LLM safety assessments and alignment beyond conventional jailbreak paradigms.
Related papers
- ROSE: Toward Reality-Oriented Safety Evaluation of Large Language Models [60.28667314609623]
Large Language Models (LLMs) are increasingly deployed as black-box components in real-world applications.<n>We propose Reality-Oriented Safety Evaluation (ROSE), a novel framework that uses multi-objective reinforcement learning to fine-tune an adversarial LLM.
arXiv Detail & Related papers (2025-06-17T10:55:17Z) - Align is not Enough: Multimodal Universal Jailbreak Attack against Multimodal Large Language Models [83.80177564873094]
We propose a unified multimodal universal jailbreak attack framework.<n>We evaluate the undesirable context generation of MLLMs like LLaVA, Yi-VL, MiniGPT4, MiniGPT-v2, and InstructBLIP.<n>This study underscores the urgent need for robust safety measures in MLLMs.
arXiv Detail & Related papers (2025-06-02T04:33:56Z) - Dark LLMs: The Growing Threat of Unaligned AI Models [8.183446952097528]
Large Language Models (LLMs) rapidly reshape modern life, advancing fields from healthcare to education and beyond.<n>The vulnerability of LLMs to jailbreak attacks stems from the very data they learn from.<n>Our research identifies the growing threat posed by dark LLMs models deliberately designed without ethical guardrails or modified through jailbreak techniques.
arXiv Detail & Related papers (2025-05-15T08:07:04Z) - Cannot See the Forest for the Trees: Invoking Heuristics and Biases to Elicit Irrational Choices of LLMs [83.11815479874447]
We propose a novel jailbreak attack framework, inspired by cognitive decomposition and biases in human cognition.<n>We employ cognitive decomposition to reduce the complexity of malicious prompts and relevance bias to reorganize prompts.<n>We also introduce a ranking-based harmfulness evaluation metric that surpasses the traditional binary success-or-failure paradigm.
arXiv Detail & Related papers (2025-05-03T05:28:11Z) - Playing the Fool: Jailbreaking LLMs and Multimodal LLMs with Out-of-Distribution Strategy [31.03584769307822]
We propose JOOD, a new Jailbreak framework via OOD-ifying inputs beyond the safety alignment.<n>Experiments across diverse jailbreak scenarios demonstrate that JOOD effectively jailbreaks recent proprietary LLMs and MLLMs.
arXiv Detail & Related papers (2025-03-26T01:25:24Z) - Layer-Level Self-Exposure and Patch: Affirmative Token Mitigation for Jailbreak Attack Defense [55.77152277982117]
We introduce Layer-AdvPatcher, a methodology designed to defend against jailbreak attacks.<n>We use an unlearning strategy to patch specific layers within large language models through self-augmented datasets.<n>Our framework reduces the harmfulness and attack success rate of jailbreak attacks.
arXiv Detail & Related papers (2025-01-05T19:06:03Z) - Look Before You Leap: Enhancing Attention and Vigilance Regarding Harmful Content with GuidelineLLM [53.79753074854936]
Large language models (LLMs) are increasingly vulnerable to emerging jailbreak attacks.<n>This vulnerability poses significant risks to real-world applications.<n>We propose a novel defensive paradigm called GuidelineLLM.
arXiv Detail & Related papers (2024-12-10T12:42:33Z) - Characterizing and Evaluating the Reliability of LLMs against Jailbreak Attacks [23.782566331783134]
We focus on 10 cutting-edge jailbreak strategies across three categories, 1525 questions from 61 specific harmful categories, and 13 popular LLMs.
We adopt multi-dimensional metrics such as Attack Success Rate (ASR), Toxicity Score, Fluency, Token Length, and Grammatical Errors to thoroughly assess the LLMs' outputs under jailbreak.
We explore the relationships among the models, attack strategies, and types of harmful content, as well as the correlations between the evaluation metrics, which proves the validity of our multifaceted evaluation framework.
arXiv Detail & Related papers (2024-08-18T01:58:03Z) - LLMs can be Dangerous Reasoners: Analyzing-based Jailbreak Attack on Large Language Models [20.154877919740322]
Existing jailbreak methods suffer from two main limitations: reliance on complicated prompt engineering and iterative optimization.<n>We propose an efficient jailbreak attack method, Analyzing-based Jailbreak (ABJ), which leverages the advanced reasoning capability of LLMs to autonomously generate harmful content.
arXiv Detail & Related papers (2024-07-23T06:14:41Z) - Unveiling the Misuse Potential of Base Large Language Models via In-Context Learning [61.2224355547598]
Open-sourcing of large language models (LLMs) accelerates application development, innovation, and scientific progress.
Our investigation exposes a critical oversight in this belief.
By deploying carefully designed demonstrations, our research demonstrates that base LLMs could effectively interpret and execute malicious instructions.
arXiv Detail & Related papers (2024-04-16T13:22:54Z) - A Chinese Dataset for Evaluating the Safeguards in Large Language Models [46.43476815725323]
Large language models (LLMs) can produce harmful responses.
This paper introduces a dataset for the safety evaluation of Chinese LLMs.
We then extend it to two other scenarios that can be used to better identify false negative and false positive examples.
arXiv Detail & Related papers (2024-02-19T14:56:18Z) - Benchmarking and Defending Against Indirect Prompt Injection Attacks on Large Language Models [79.0183835295533]
We introduce the first benchmark for indirect prompt injection attacks, named BIPIA, to assess the risk of such vulnerabilities.<n>Our analysis identifies two key factors contributing to their success: LLMs' inability to distinguish between informational context and actionable instructions, and their lack of awareness in avoiding the execution of instructions within external content.<n>We propose two novel defense mechanisms-boundary awareness and explicit reminder-to address these vulnerabilities in both black-box and white-box settings.
arXiv Detail & Related papers (2023-12-21T01:08:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.