論文の概要: Evidential Spectrum-Aware Contrastive Learning for OOD Detection in Dynamic Graphs
- arxiv url: http://arxiv.org/abs/2506.07417v1
- Date: Mon, 09 Jun 2025 04:34:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-10 21:10:47.115003
- Title: Evidential Spectrum-Aware Contrastive Learning for OOD Detection in Dynamic Graphs
- Title(参考訳): ダイナミックグラフにおけるOOD検出のための証拠スペクトル対応コントラスト学習
- Authors: Nan Sun, Xixun Lin, Zhiheng Zhou, Yanmin Shang, Zhenlin Cheng, Yanan Cao,
- Abstract要約: 動的グラフにおけるアウト・オブ・ディストリビューション(OOD)検出は、受信したデータがイン・ディストリビューション(ID)トレーニングセットの分布から逸脱するかどうかを特定することを目的としている。
我々は、Evidential Spectrum-awarE Contrastive Learningを用いた、革新的で効果的なOOD検出器であるEviSECを提案する。
- 参考スコア(独自算出の注目度): 17.750640850821622
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, Out-of-distribution (OOD) detection in dynamic graphs, which aims to identify whether incoming data deviates from the distribution of the in-distribution (ID) training set, has garnered considerable attention in security-sensitive fields. Current OOD detection paradigms primarily focus on static graphs and confront two critical challenges: i) high bias and high variance caused by single-point estimation, which makes the predictions sensitive to randomness in the data; ii) score homogenization resulting from the lack of OOD training data, where the model only learns ID-specific patterns, resulting in overall low OOD scores and a narrow score gap between ID and OOD data. To tackle these issues, we first investigate OOD detection in dynamic graphs through the lens of Evidential Deep Learning (EDL). Specifically, we propose EviSEC, an innovative and effective OOD detector via Evidential Spectrum-awarE Contrastive Learning. We design an evidential neural network to redefine the output as the posterior Dirichlet distribution, explaining the randomness of inputs through the uncertainty of distribution, which is overlooked by single-point estimation. Moreover, spectrum-aware augmentation module generates OOD approximations to identify patterns with high OOD scores, thereby widening the score gap between ID and OOD data and mitigating score homogenization. Extensive experiments on real-world datasets demonstrate that EviSAC effectively detects OOD samples in dynamic graphs.
- Abstract(参考訳): 近年,In-Distribution (ID) トレーニングセットの分布から受信データが逸脱するかどうかを識別する動的グラフにおけるout-of-distriion (OOD) 検出が注目されている。
現在のOOD検出パラダイムは主に静的グラフに焦点を当てており、2つの重要な課題に直面しています。
一 単点推定による高バイアス及び高分散により、データのランダム性に敏感な予測をすることができること。
二 モデルがID固有のパターンのみを学習するOODトレーニングデータの欠如により、総合的に低いOODスコアとIDとOODデータ間のスコアギャップが狭くなること。
これらの問題に対処するために,我々はまず,Evidential Deep Learning (EDL) レンズを用いた動的グラフのOOD検出について検討する。
具体的には、Evidential Spectrum-awarE Contrastive Learningを用いた革新的で効果的なOOD検出器であるEviSECを提案する。
単一点推定で見落としている分布の不確実性を通して入力のランダム性を記述し、出力を後続ディリクレ分布として再定義する明らかなニューラルネットワークを設計する。
さらに、スペクトル認識増幅モジュールはOOD近似を生成し、高いOODスコアを持つパターンを識別し、IDとOODデータのスコアギャップを広げ、スコアの均質化を緩和する。
実世界のデータセットに関する大規模な実験により、EviSACは動的グラフのOODサンプルを効果的に検出することを示した。
関連論文リスト
- HGOE: Hybrid External and Internal Graph Outlier Exposure for Graph Out-of-Distribution Detection [78.47008997035158]
グラフデータはより多様性を示すが、摂動に対する堅牢性は低く、外れ値の統合を複雑にする。
我々は、グラフOOD検出性能を改善するために、textbfHybrid外部および内部の textbfGraph textbfOutlier textbfExposure (HGOE) の導入を提案する。
論文 参考訳(メタデータ) (2024-07-31T16:55:18Z) - Rethinking Out-of-Distribution Detection on Imbalanced Data Distribution [38.844580833635725]
アーキテクチャ設計におけるバイアスを緩和し,不均衡なOOD検出器を増強する訓練時間正規化手法を提案する。
提案手法は,CIFAR10-LT,CIFAR100-LT,ImageNet-LTのベンチマークに対して一貫した改良を行う。
論文 参考訳(メタデータ) (2024-07-23T12:28:59Z) - Enhancing OOD Detection Using Latent Diffusion [5.093257685701887]
Out-of-Distribution (OOD) 検出アルゴリズムは、現実世界のデプロイにおいて未知のサンプルやオブジェクトを特定するために開発された。
潜在空間におけるOOD学習データを合成するoutlier Aware Learningフレームワークを提案する。
また,OODデータを用いたトレーニングにおいて,ID分類精度の低下を防止するための知識蒸留モジュールを開発した。
論文 参考訳(メタデータ) (2024-06-24T11:01:43Z) - Optimizing OOD Detection in Molecular Graphs: A Novel Approach with Diffusion Models [71.39421638547164]
本稿では,入力分子と再構成グラフの類似性を比較する補助拡散モデルに基づくフレームワークを用いてOOD分子を検出することを提案する。
IDトレーニングサンプルの再構成に向けた生成バイアスのため、OOD分子の類似度スコアは検出を容易にするためにはるかに低い。
本研究は,PGR-MOOD(PGR-MOOD)とよばれる分子OOD検出のためのプロトタイプグラフ再構成のアプローチを開拓し,3つのイノベーションを生かした。
論文 参考訳(メタデータ) (2024-04-24T03:25:53Z) - EAT: Towards Long-Tailed Out-of-Distribution Detection [55.380390767978554]
本稿では,長い尾を持つOOD検出の課題に対処する。
主な困難は、尾クラスに属するサンプルとOODデータを区別することである。
本稿では,(1)複数の禁制クラスを導入して分布内クラス空間を拡大すること,(2)コンテキストリッチなOODデータに画像をオーバーレイすることでコンテキスト限定のテールクラスを拡大すること,の2つの簡単な考え方を提案する。
論文 参考訳(メタデータ) (2023-12-14T13:47:13Z) - Out-of-distribution Detection Learning with Unreliable
Out-of-distribution Sources [73.28967478098107]
アウト・オブ・ディストリビューション(OOD)検出は、予測者が有効な予測を行うことができないOODデータをイン・ディストリビューション(ID)データとして識別する。
通常、OODパターンを識別できる予測器をトレーニングするために、実際のアウト・オブ・ディストリビューション(OOD)データを収集するのは困難である。
本稿では,Auxiliary Task-based OOD Learning (ATOL) というデータ生成に基づく学習手法を提案する。
論文 参考訳(メタデータ) (2023-11-06T16:26:52Z) - LINe: Out-of-Distribution Detection by Leveraging Important Neurons [15.797257361788812]
本稿では,分布内データとOODデータ間のモデル出力の差を解析するための新しい側面を紹介する。
本稿では,分布検出のポストホックアウトのための新しい手法であるLINe( Leveraging Important Neurons)を提案する。
論文 参考訳(メタデータ) (2023-03-24T13:49:05Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
我々は,GNNSafeと呼ばれるグラフ上での学習のための,シンプルで強力で効率的なOOD検出モデルを提案する。
GNNSafeは、最先端技術に対するAUROCの改善を最大17.0%で達成しており、そのような未開発領域では単純だが強力なベースラインとして機能する可能性がある。
論文 参考訳(メタデータ) (2023-02-06T16:38:43Z) - GOOD-D: On Unsupervised Graph Out-Of-Distribution Detection [67.90365841083951]
我々は,OODグラフを検出するための新しいグラフコントラスト学習フレームワークGOOD-Dを開発した。
GOOD-Dは、潜在IDパターンをキャプチャし、異なる粒度のセマンティック不整合に基づいてOODグラフを正確に検出することができる。
教師なしグラフレベルのOOD検出における先駆的な研究として,提案手法と最先端手法を比較した総合的なベンチマークを構築した。
論文 参考訳(メタデータ) (2022-11-08T12:41:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。