論文の概要: DeRAGEC: Denoising Named Entity Candidates with Synthetic Rationale for ASR Error Correction
- arxiv url: http://arxiv.org/abs/2506.07510v1
- Date: Mon, 09 Jun 2025 07:37:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-10 16:33:10.852386
- Title: DeRAGEC: Denoising Named Entity Candidates with Synthetic Rationale for ASR Error Correction
- Title(参考訳): DeRAGEC: ASR誤り訂正のための合成規則による名前付きエンティティ候補の識別
- Authors: Solee Im, Wonjun Lee, Jinmyeong An, Yunsu Kim, Jungseul Ok, Gary Geunbae Lee,
- Abstract要約: 本稿では、自動音声認識(ASR)システムにおいて、名前付きエンティティ(NE)補正を改善する方法であるDeRAGECを提案する。
Retrieval-Augmented Generative Error Correction (RAGEC) フレームワークを拡張することで、DeRAGECは、ノイズの多いNE候補を修正前にフィルタリングするために、合成 denoising rationals を採用する。
CommonVoiceとSTOPデータセットの実験結果から,ワードエラー率(WER)とNEヒット率に大きな改善が見られた。
- 参考スコア(独自算出の注目度): 11.823876673099662
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present DeRAGEC, a method for improving Named Entity (NE) correction in Automatic Speech Recognition (ASR) systems. By extending the Retrieval-Augmented Generative Error Correction (RAGEC) framework, DeRAGEC employs synthetic denoising rationales to filter out noisy NE candidates before correction. By leveraging phonetic similarity and augmented definitions, it refines noisy retrieved NEs using in-context learning, requiring no additional training. Experimental results on CommonVoice and STOP datasets show significant improvements in Word Error Rate (WER) and NE hit ratio, outperforming baseline ASR and RAGEC methods. Specifically, we achieved a 28% relative reduction in WER compared to ASR without postprocessing. Our source code is publicly available at: https://github.com/solee0022/deragec
- Abstract(参考訳): 本稿では、自動音声認識(ASR)システムにおいて、名前付きエンティティ(NE)補正を改善する方法であるDeRAGECを提案する。
Retrieval-Augmented Generative Error Correction (RAGEC) フレームワークを拡張することで、DeRAGECは、ノイズの多いNE候補を修正前にフィルタリングするために、合成 denoising rationals を採用する。
音韻的類似性や拡張定義を利用することで、文脈内学習によるノイズの多い検索NEを洗練し、追加の訓練を必要としない。
CommonVoice と STOP データセットの実験結果から,ワードエラー率 (WER) と NE ヒット率が大きく向上し,ベースライン ASR と RAGEC の手法より優れていた。
特に, 後処理を伴わないASRと比較して, WERの相対的減少率は28%であった。
私たちのソースコードは、https://github.com/solee0022/deragec.comで公開されています。
関連論文リスト
- Failing Forward: Improving Generative Error Correction for ASR with Synthetic Data and Retrieval Augmentation [73.9145653659403]
生成誤差補正モデルは、トレーニング中に発生する特定の種類のエラーを超えて一般化することが困難であることを示す。
DARAGは、ドメイン内(ID)およびOODシナリオにおけるASRのためのGCCを改善するために設計された新しいアプローチである。
私たちのアプローチはシンプルでスケーラブルで、ドメインと言語に依存しません。
論文 参考訳(メタデータ) (2024-10-17T04:00:29Z) - Spelling Correction through Rewriting of Non-Autoregressive ASR Lattices [8.77712061194924]
本稿では,トランスフォーマーを用いたCTCモデルにより生成されたワードピース格子を書き換える有限状態トランスデューサ(FST)手法を提案する。
本アルゴリズムは,単語から音素への変換を直接行うため,明示的な単語表現を避けることができる。
文脈関連エンティティを用いたテストにおいて, 文誤り率(SER)の15.2%の相対的低減を実現した。
論文 参考訳(メタデータ) (2024-09-24T21:42:25Z) - Error Correction by Paying Attention to Both Acoustic and Confidence References for Automatic Speech Recognition [52.624909026294105]
本稿では,非自己回帰型音声誤り訂正法を提案する。
信頼モジュールは、N-best ASR仮説の各単語の不確実性を測定する。
提案方式は,ASRモデルと比較して誤差率を21%削減する。
論文 参考訳(メタデータ) (2024-06-29T17:56:28Z) - Crossmodal ASR Error Correction with Discrete Speech Units [16.58209270191005]
ASR誤り訂正(AEC)に対するASR後処理手法を提案する。
我々は、事前学習と微調整の戦略を探求し、ASRドメインの不一致現象を明らかにする。
そこで本稿では,AEC品質向上のための単語埋め込みの整合・強化を目的とした,離散音声ユニットの組込みを提案する。
論文 参考訳(メタデータ) (2024-05-26T19:58:38Z) - PATCorrect: Non-autoregressive Phoneme-augmented Transformer for ASR
Error Correction [0.9502148118198473]
単語誤り率(WER)を低減する新しい非自己回帰的(NAR)アプローチであるPATCorrectを提案する。
PATCorrectは、様々な上流ASRシステムにおいて、英語コーパスにおける最先端のNAR法より一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-02-10T04:05:24Z) - Improving Noise Robustness of Contrastive Speech Representation Learning
with Speech Reconstruction [109.44933866397123]
実環境における音声認識システムの実現には,雑音の堅牢性が不可欠である。
雑音認識のための自己教師型フレームワークにより学習したノイズロスト表現を用いる。
ラベル付きデータのわずか16%で報告された最高の教師付きアプローチに匹敵するパフォーマンスを実現した。
論文 参考訳(メタデータ) (2021-10-28T20:39:02Z) - An Approach to Improve Robustness of NLP Systems against ASR Errors [39.57253455717825]
音声対応システムは通常、音声を自動音声認識モデルを介してテキストに変換し、テキストを下流の自然言語処理モジュールに供給します。
ASRシステムのエラーは、NLPモジュールの性能を著しく低下させる可能性がある。
これまでの研究では、トレーニングプロセス中にasrノイズを注入することにより、この問題を解決するためにデータ拡張手法を用いることが有効であることが示されている。
論文 参考訳(メタデータ) (2021-03-25T05:15:43Z) - A Self-Refinement Strategy for Noise Reduction in Grammatical Error
Correction [54.569707226277735]
既存の文法的誤り訂正(GEC)のアプローチは、手動で作成したGECデータセットによる教師あり学習に依存している。
誤りが不適切に編集されたり、修正されなかったりする「ノイズ」は無視できないほどある。
本稿では,既存のモデルの予測整合性を利用して,これらのデータセットをデノマイズする自己補充手法を提案する。
論文 参考訳(メタデータ) (2020-10-07T04:45:09Z) - Improving Readability for Automatic Speech Recognition Transcription [50.86019112545596]
我々は、可読性のためのASRポストプロセッシング(APR)と呼ばれる新しいNLPタスクを提案する。
APRは、ノイズの多いASR出力を、話者の意味を保ちながら、人間や下流タスクのための読みやすいテキストに変換することを目的としている。
我々は,いくつかのオープンソースモデルと適応型事前学習モデルに基づく微調整モデルと,従来のパイプライン手法との比較を行った。
論文 参考訳(メタデータ) (2020-04-09T09:26:42Z) - Joint Contextual Modeling for ASR Correction and Language Understanding [60.230013453699975]
言語理解(LU)と協調してASR出力の文脈的言語補正を行うマルチタスクニューラルアプローチを提案する。
そこで本研究では,市販のASRおよびLUシステムの誤差率を,少量のドメイン内データを用いてトレーニングしたジョイントモデルと比較して14%削減できることを示した。
論文 参考訳(メタデータ) (2020-01-28T22:09:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。