APTOS-2024 challenge report: Generation of synthetic 3D OCT images from fundus photographs
- URL: http://arxiv.org/abs/2506.07542v1
- Date: Mon, 09 Jun 2025 08:29:37 GMT
- Title: APTOS-2024 challenge report: Generation of synthetic 3D OCT images from fundus photographs
- Authors: Bowen Liu, Weiyi Zhang, Peranut Chotcomwongse, Xiaolan Chen, Ruoyu Chen, Pawin Pakaymaskul, Niracha Arjkongharn, Nattaporn Vongsa, Xuelian Cheng, Zongyuan Ge, Kun Huang, Xiaohui Li, Yiru Duan, Zhenbang Wang, BaoYe Xie, Qiang Chen, Huazhu Fu, Michael A. Mahr, Jiaqi Qu, Wangyiyang Chen, Shiye Wang, Yubo Tan, Yongjie Li, Mingguang He, Danli Shi, Paisan Ruamviboonsuk,
- Abstract summary: The Asia Pacific Tele-Ophthalmology Society organized a challenge titled Artificial Intelligence-based OCT Generation from Fundus Images.<n>This paper details the challenge framework (referred to as APTOS-2024 Challenge), including the benchmark dataset.<n>The challenge attracted 342 participating teams, with 42 preliminary submissions and 9 finalists.
- Score: 42.58128666405841
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Optical Coherence Tomography (OCT) provides high-resolution, 3D, and non-invasive visualization of retinal layers in vivo, serving as a critical tool for lesion localization and disease diagnosis. However, its widespread adoption is limited by equipment costs and the need for specialized operators. In comparison, 2D color fundus photography offers faster acquisition and greater accessibility with less dependence on expensive devices. Although generative artificial intelligence has demonstrated promising results in medical image synthesis, translating 2D fundus images into 3D OCT images presents unique challenges due to inherent differences in data dimensionality and biological information between modalities. To advance generative models in the fundus-to-3D-OCT setting, the Asia Pacific Tele-Ophthalmology Society (APTOS-2024) organized a challenge titled Artificial Intelligence-based OCT Generation from Fundus Images. This paper details the challenge framework (referred to as APTOS-2024 Challenge), including: the benchmark dataset, evaluation methodology featuring two fidelity metrics-image-based distance (pixel-level OCT B-scan similarity) and video-based distance (semantic-level volumetric consistency), and analysis of top-performing solutions. The challenge attracted 342 participating teams, with 42 preliminary submissions and 9 finalists. Leading methodologies incorporated innovations in hybrid data preprocessing or augmentation (cross-modality collaborative paradigms), pre-training on external ophthalmic imaging datasets, integration of vision foundation models, and model architecture improvement. The APTOS-2024 Challenge is the first benchmark demonstrating the feasibility of fundus-to-3D-OCT synthesis as a potential solution for improving ophthalmic care accessibility in under-resourced healthcare settings, while helping to expedite medical research and clinical applications.
Related papers
- RetinaLogos: Fine-Grained Synthesis of High-Resolution Retinal Images Through Captions [15.499798559622528]
RetinaLogos-1400k is a large-scale, synthetic Caption-CFP dataset comprising 1.4 million entries.<n>We employ a novel three-step training framework, called RetinaLogos, which enables fine-grained semantic control over retinal images.<n>Experiments demonstrate state-of-the-art performance across multiple datasets, with 62.07% of text-driven synthetic images indistinguishable from real ones by ophthalmologists.
arXiv Detail & Related papers (2025-05-19T09:18:11Z) - The Quest for Early Detection of Retinal Disease: 3D CycleGAN-based Translation of Optical Coherence Tomography into Confocal Microscopy [11.321411104729002]
We propose a novel framework based on unsupervised 3D CycleGAN for translating unpaired in vivo OCT to ex vivo confocal microscopy images.
This marks the first attempt to exploit the inherent 3D information of OCT and translate it into the rich, detailed color domain of confocal microscopy.
arXiv Detail & Related papers (2024-08-07T21:13:49Z) - URCDM: Ultra-Resolution Image Synthesis in Histopathology [4.393805955844748]
Ultra-Resolution Cascaded Diffusion Models (URCDMs) are capable of synthesising entire histopathology images at high resolutions.
We evaluate our method on three separate datasets, consisting of brain, breast and kidney tissue.
URCDMs consistently generate outputs across various resolutions that trained evaluators cannot distinguish from real images.
arXiv Detail & Related papers (2024-07-18T08:31:55Z) - QUBIQ: Uncertainty Quantification for Biomedical Image Segmentation Challenge [93.61262892578067]
Uncertainty in medical image segmentation tasks, especially inter-rater variability, presents a significant challenge.
This variability directly impacts the development and evaluation of automated segmentation algorithms.
We report the set-up and summarize the benchmark results of the Quantification of Uncertainties in Biomedical Image Quantification Challenge (QUBIQ)
arXiv Detail & Related papers (2024-03-19T17:57:24Z) - AI-based association analysis for medical imaging using latent-space geometric confounder correction [6.1230206418222615]
This study addresses the challenges of confounding effects and interpretability in artificial-intelligence-based medical image analysis.<n>We propose a different strategy that retains confounder-related information in latent representations while finding an alternative confounder-free representation of the image data.<n>Results affirm the method's effectiveness in reducing confounder influences, preventing wrong or misleading associations, and offering a unique visual interpretation for in-depth investigations by clinical and epidemiological researchers.
arXiv Detail & Related papers (2023-10-03T16:09:07Z) - DRAC: Diabetic Retinopathy Analysis Challenge with Ultra-Wide Optical
Coherence Tomography Angiography Images [51.27125547308154]
We organized a challenge named "DRAC - Diabetic Retinopathy Analysis Challenge" in conjunction with the 25th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2022)
The challenge consists of three tasks: segmentation of DR lesions, image quality assessment and DR grading.
This paper presents a summary and analysis of the top-performing solutions and results for each task of the challenge.
arXiv Detail & Related papers (2023-04-05T12:04:55Z) - FetReg2021: A Challenge on Placental Vessel Segmentation and
Registration in Fetoscopy [52.3219875147181]
Fetoscopic laser photocoagulation is a widely adopted procedure for treating Twin-to-Twin Transfusion Syndrome (TTTS)
The procedure is particularly challenging due to the limited field of view, poor manoeuvrability of the fetoscope, poor visibility, and variability in illumination.
Computer-assisted intervention (CAI) can provide surgeons with decision support and context awareness by identifying key structures in the scene and expanding the fetoscopic field of view through video mosaicking.
Seven teams participated in this challenge and their model performance was assessed on an unseen test dataset of 658 pixel-annotated images from 6 fet
arXiv Detail & Related papers (2022-06-24T23:44:42Z) - OADAT: Experimental and Synthetic Clinical Optoacoustic Data for
Standardized Image Processing [62.993663757843464]
Optoacoustic (OA) imaging is based on excitation of biological tissues with nanosecond-duration laser pulses followed by detection of ultrasound waves generated via light-absorption-mediated thermoelastic expansion.
OA imaging features a powerful combination between rich optical contrast and high resolution in deep tissues.
No standardized datasets generated with different types of experimental set-up and associated processing methods are available to facilitate advances in broader applications of OA in clinical settings.
arXiv Detail & Related papers (2022-06-17T08:11:26Z) - REFUGE2 Challenge: Treasure for Multi-Domain Learning in Glaucoma
Assessment [45.41988445653055]
REFUGE2 challenge released 2,000 color fundus images of four models, including Zeiss, Canon, Kowa and Topcon.
Three sub-tasks were designed in the challenge, including glaucoma classification, cup/optic disc segmentation, and macular fovea localization.
This article summarizes the methods of some of the finalists and analyzes their results.
arXiv Detail & Related papers (2022-02-18T02:56:21Z) - Multi-Scale Convolutional Neural Network for Automated AMD
Classification using Retinal OCT Images [1.299941371793082]
Age-related macular degeneration (AMD) is the most common cause of blindness in developed countries, especially in people over 60 years of age.
Recent developments in deep learning have provided a unique opportunity for the development of fully automated diagnosis frameworks.
We propose a multi-scale convolutional neural network (CNN) capable of distinguishing pathologies using receptive fields with various sizes.
arXiv Detail & Related papers (2021-10-06T18:20:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.