Multi-Scale Convolutional Neural Network for Automated AMD
Classification using Retinal OCT Images
- URL: http://arxiv.org/abs/2110.03002v1
- Date: Wed, 6 Oct 2021 18:20:58 GMT
- Title: Multi-Scale Convolutional Neural Network for Automated AMD
Classification using Retinal OCT Images
- Authors: Saman Sotoudeh-Paima, Ata Jodeiri, Fedra Hajizadeh, Hamid
Soltanian-Zadeh
- Abstract summary: Age-related macular degeneration (AMD) is the most common cause of blindness in developed countries, especially in people over 60 years of age.
Recent developments in deep learning have provided a unique opportunity for the development of fully automated diagnosis frameworks.
We propose a multi-scale convolutional neural network (CNN) capable of distinguishing pathologies using receptive fields with various sizes.
- Score: 1.299941371793082
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Age-related macular degeneration (AMD) is the most common cause of blindness
in developed countries, especially in people over 60 years of age. The workload
of specialists and the healthcare system in this field has increased in recent
years mainly dues to three reasons: 1) increased use of retinal optical
coherence tomography (OCT) imaging technique, 2) prevalence of population aging
worldwide, and 3) chronic nature of AMD. Recent developments in deep learning
have provided a unique opportunity for the development of fully automated
diagnosis frameworks. Considering the presence of AMD-related retinal
pathologies in varying sizes in OCT images, our objective was to propose a
multi-scale convolutional neural network (CNN) capable of distinguishing
pathologies using receptive fields with various sizes. The multi-scale CNN was
designed based on the feature pyramid network (FPN) structure and was used to
diagnose normal and two common clinical characteristics of dry and wet AMD,
namely drusen and choroidal neovascularization (CNV). The proposed method was
evaluated on a national dataset gathered at Noor Eye Hospital (NEH), consisting
of 12649 retinal OCT images from 441 patients, and a UCSD public dataset,
consisting of 108312 OCT images. The results show that the multi-scale
FPN-based structure was able to improve the base model's overall accuracy by
0.4% to 3.3% for different backbone models. In addition, gradual learning
improved the performance in two phases from 87.2%+-2.5% to 93.4%+-1.4% by
pre-training the base model on ImageNet weights in the first phase and
fine-tuning the resulting model on a dataset of OCT images in the second phase.
The promising quantitative and qualitative results of the proposed architecture
prove the suitability of the proposed method to be used as a screening tool in
healthcare centers assisting ophthalmologists in making better diagnostic
decisions.
Related papers
- Domain-specific augmentations with resolution agnostic self-attention mechanism improves choroid segmentation in optical coherence tomography images [3.8485899972356337]
The choroid is a key vascular layer of the eye, supplying oxygen to the retinal photoreceptors.
Current methods to measure the choroid often require use of multiple, independent semi-automatic and deep learning-based algorithms.
We propose a Robust, Resolution-agnostic and Efficient Attention-based network for CHoroid segmentation (REACH)
arXiv Detail & Related papers (2024-05-23T11:35:23Z) - AMDNet23: A combined deep Contour-based Convolutional Neural Network and
Long Short Term Memory system to diagnose Age-related Macular Degeneration [0.0]
This study operates on a AMDNet23 system of deep learning that combined the neural networks made up of convolutions (CNN) and short-term and long-term memory (LSTM) to automatically detect aged macular degeneration (AMD) disease from fundus ophthalmology.
The proposed hybrid deep AMDNet23 model demonstrates to detection of AMD ocular disease and the experimental result achieved an accuracy 96.50%, specificity 99.32%, sensitivity 96.5%, and F1-score 96.49.0%.
arXiv Detail & Related papers (2023-08-30T07:48:32Z) - nnUNet RASPP for Retinal OCT Fluid Detection, Segmentation and
Generalisation over Variations of Data Sources [25.095695898777656]
We propose two variants of the nnUNet with consistent high performance across images from multiple device vendors.
The algorithm was validated on the MICCAI 2017 RETOUCH challenge dataset.
Experimental results show that our algorithms outperform the current state-of-the-arts algorithms.
arXiv Detail & Related papers (2023-02-25T23:47:23Z) - Early Diagnosis of Retinal Blood Vessel Damage via Deep Learning-Powered
Collective Intelligence Models [0.3670422696827525]
The power of swarm algorithms is used to search for various combinations of convolutional, pooling, and normalization layers to provide the best model for the task.
The best TDCN model achieves an accuracy of 90.3%, AUC ROC of 0.956, and a Cohen score of 0.967.
arXiv Detail & Related papers (2022-10-17T21:38:38Z) - ROCT-Net: A new ensemble deep convolutional model with improved spatial
resolution learning for detecting common diseases from retinal OCT images [0.0]
This paper presents a new enhanced deep ensemble convolutional neural network for detecting retinal diseases from OCT images.
Our model generates rich and multi-resolution features by employing the learning architectures of two robust convolutional models.
Our experiments on two datasets and comparing our model with some other well-known deep convolutional neural networks have proven that our architecture can increase the classification accuracy up to 5%.
arXiv Detail & Related papers (2022-03-03T17:51:01Z) - Osteoporosis Prescreening using Panoramic Radiographs through a Deep
Convolutional Neural Network with Attention Mechanism [65.70943212672023]
Deep convolutional neural network (CNN) with an attention module can detect osteoporosis on panoramic radiographs.
dataset of 70 panoramic radiographs (PRs) from 70 different subjects of age between 49 to 60 was used.
arXiv Detail & Related papers (2021-10-19T00:03:57Z) - Vision Transformers for femur fracture classification [59.99241204074268]
The Vision Transformer (ViT) was able to correctly predict 83% of the test images.
Good results were obtained in sub-fractures with the largest and richest dataset ever.
arXiv Detail & Related papers (2021-08-07T10:12:42Z) - Deep Implicit Statistical Shape Models for 3D Medical Image Delineation [47.78425002879612]
3D delineation of anatomical structures is a cardinal goal in medical imaging analysis.
Prior to deep learning, statistical shape models that imposed anatomical constraints and produced high quality surfaces were a core technology.
We present deep implicit statistical shape models (DISSMs), a new approach to delineation that marries the representation power of CNNs with the robustness of SSMs.
arXiv Detail & Related papers (2021-04-07T01:15:06Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
" 2018 Left Atrium Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset.
Analyse of the submitted algorithms using technical and biological metrics was performed.
Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm.
arXiv Detail & Related papers (2020-04-26T08:49:17Z) - Retinopathy of Prematurity Stage Diagnosis Using Object Segmentation and
Convolutional Neural Networks [68.96150598294072]
Retinopathy of Prematurity (ROP) is an eye disorder primarily affecting premature infants with lower weights.
It causes proliferation of vessels in the retina and could result in vision loss and, eventually, retinal detachment, leading to blindness.
In recent years, there has been a significant effort to automate the diagnosis using deep learning.
This paper builds upon the success of previous models and develops a novel architecture, which combines object segmentation and convolutional neural networks (CNN)
Our proposed system first trains an object segmentation model to identify the demarcation line at a pixel level and adds the resulting mask as an additional "color" channel in
arXiv Detail & Related papers (2020-04-03T14:07:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.