LLM-driven Indoor Scene Layout Generation via Scaled Human-aligned Data Synthesis and Multi-Stage Preference Optimization
- URL: http://arxiv.org/abs/2506.07570v1
- Date: Mon, 09 Jun 2025 09:13:06 GMT
- Title: LLM-driven Indoor Scene Layout Generation via Scaled Human-aligned Data Synthesis and Multi-Stage Preference Optimization
- Authors: Yixuan Yang, Zhen Luo, Tongsheng Ding, Junru Lu, Mingqi Gao, Jinyu Yang, Victor Sanchez, Feng Zheng,
- Abstract summary: Existing indoor layout generation methods fall into two categories: prompt-driven and learning-based.<n>We present 3D- SynthPlace, a large-scale dataset that combines synthetic layouts generated via a 'GPT synthesize, Human inspect' pipeline.<n>We introduce OptiScene, a strong open-source LLM optimized for indoor layout generation.
- Score: 45.33085417914205
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automatic indoor layout generation has attracted increasing attention due to its potential in interior design, virtual environment construction, and embodied AI. Existing methods fall into two categories: prompt-driven approaches that leverage proprietary LLM services (e.g., GPT APIs) and learning-based methods trained on layout data upon diffusion-based models. Prompt-driven methods often suffer from spatial inconsistency and high computational costs, while learning-based methods are typically constrained by coarse relational graphs and limited datasets, restricting their generalization to diverse room categories. In this paper, we revisit LLM-based indoor layout generation and present 3D-SynthPlace, a large-scale dataset that combines synthetic layouts generated via a 'GPT synthesize, Human inspect' pipeline, upgraded from the 3D-Front dataset. 3D-SynthPlace contains nearly 17,000 scenes, covering four common room types -- bedroom, living room, kitchen, and bathroom -- enriched with diverse objects and high-level spatial annotations. We further introduce OptiScene, a strong open-source LLM optimized for indoor layout generation, fine-tuned based on our 3D-SynthPlace dataset through our two-stage training. For the warum-up stage I, we adopt supervised fine-tuning (SFT), which is taught to first generate high-level spatial descriptions then conditionally predict concrete object placements. For the reinforcing stage II, to better align the generated layouts with human design preferences, we apply multi-turn direct preference optimization (DPO), which significantly improving layout quality and generation success rates. Extensive experiments demonstrate that OptiScene outperforms traditional prompt-driven and learning-based baselines. Moreover, OptiScene shows promising potential in interactive tasks such as scene editing and robot navigation.
Related papers
- SpatialLM: Training Large Language Models for Structured Indoor Modeling [34.0957676434764]
SpatialLM is a large language model designed to process 3D point cloud data and generate structured 3D scene understanding outputs.<n>We collect a large-scale, high-quality synthetic dataset consisting of the point clouds of 12,328 indoor scenes with ground-truth 3D annotations.<n>Our model gives state-of-the-art performance in layout estimation and competitive results in 3D object detection.
arXiv Detail & Related papers (2025-06-09T07:10:58Z) - Direct Numerical Layout Generation for 3D Indoor Scene Synthesis via Spatial Reasoning [27.872834485482276]
3D indoor scene synthesis is vital for embodied AI and digital content creation.<n>Existing methods fail to generate scenes that are both open-vocabulary and aligned with fine-grained user instructions.<n>We introduce Direct, a framework that directly generates numerical 3D layouts from text descriptions.
arXiv Detail & Related papers (2025-06-05T17:59:42Z) - Spatial-MLLM: Boosting MLLM Capabilities in Visual-based Spatial Intelligence [13.168559963356952]
We present Spatial-MLLM, a novel framework for visual-based spatial reasoning from purely 2D observations.<n>Our key insight is to unleash the strong structure prior to the feed-forward visual geometry foundation model.<n>A connector then integrates both features into unified visual tokens for enhanced spatial understanding.
arXiv Detail & Related papers (2025-05-29T17:59:04Z) - Intern-GS: Vision Model Guided Sparse-View 3D Gaussian Splatting [95.61137026932062]
Intern-GS is a novel approach to enhance the process of sparse-view Gaussian splatting.<n>We show that Intern-GS achieves state-of-the-art rendering quality across diverse datasets.
arXiv Detail & Related papers (2025-05-27T05:17:49Z) - QuickSplat: Fast 3D Surface Reconstruction via Learned Gaussian Initialization [69.50126552763157]
Surface reconstruction is fundamental to computer vision and graphics, enabling applications in 3D modeling, mixed reality, robotics, and more.<n>Existing approaches based on rendering obtain promising results, but optimize on a per-scene basis, resulting in a slow optimization that can struggle to model textureless regions.<n>We introduce QuickSplat, which learns data-driven priors to generate dense initializations for 2D gaussian splatting optimization of large-scale indoor scenes.
arXiv Detail & Related papers (2025-05-08T18:43:26Z) - From Flatland to Space: Teaching Vision-Language Models to Perceive and Reason in 3D [32.547597353581594]
We introduce a novel 2D spatial data generation and annotation pipeline built upon scene data with 3D ground-truth.<n>We construct SPAR-7M, a large-scale dataset generated from thousands of scenes across multiple public datasets.<n>In addition, we introduce SPAR-Bench, a benchmark designed to offer a more comprehensive evaluation of spatial capabilities.
arXiv Detail & Related papers (2025-03-29T04:51:50Z) - LayoutVLM: Differentiable Optimization of 3D Layout via Vision-Language Models [57.92316645992816]
Spatial reasoning is a fundamental aspect of human cognition, enabling intuitive understanding and manipulation of objects in three-dimensional space.<n>We introduce LayoutVLM, a framework and scene layout representation that exploits the semantic knowledge of Vision-Language Models (VLMs)<n>We demonstrate that fine-tuning VLMs with the proposed scene layout representation extracted from existing scene datasets can improve their reasoning performance.
arXiv Detail & Related papers (2024-12-03T06:15:04Z) - DeBaRA: Denoising-Based 3D Room Arrangement Generation [22.96293773013579]
We introduce DeBaRA, a score-based model specifically tailored for precise, controllable and flexible arrangement generation in a bounded environment.
We demonstrate that by focusing on spatial attributes of objects, a single trained DeBaRA model can be leveraged at test time to perform several downstream applications such as scene synthesis, completion and re-arrangement.
arXiv Detail & Related papers (2024-09-26T23:18:25Z) - LLplace: The 3D Indoor Scene Layout Generation and Editing via Large Language Model [58.24851949945434]
LLplace is a novel 3D indoor scene layout designer based on lightweight fine-tuned open-source LLM Llama3.
LLplace circumvents the need for spatial relationship priors and in-context exemplars, enabling efficient and credible room layout generation.
Our approach demonstrates that LLplace can effectively generate and edit 3D indoor layouts interactively and outperform existing methods in delivering high-quality 3D design solutions.
arXiv Detail & Related papers (2024-06-06T08:53:01Z) - Mixed Diffusion for 3D Indoor Scene Synthesis [55.94569112629208]
We present MiDiffusion, a novel mixed discrete-continuous diffusion model designed to synthesize plausible 3D indoor scenes.<n>We show it outperforms state-of-the-art autoregressive and diffusion models in floor-conditioned 3D scene synthesis.
arXiv Detail & Related papers (2024-05-31T17:54:52Z) - ATISS: Autoregressive Transformers for Indoor Scene Synthesis [112.63708524926689]
We present ATISS, a novel autoregressive transformer architecture for creating synthetic indoor environments.
We argue that this formulation is more natural, as it makes ATISS generally useful beyond fully automatic room layout synthesis.
Our model is trained end-to-end as an autoregressive generative model using only labeled 3D bounding boxes as supervision.
arXiv Detail & Related papers (2021-10-07T17:58:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.