論文の概要: A Proposal to Extend the Common Model of Cognition with Metacognition
- arxiv url: http://arxiv.org/abs/2506.07807v1
- Date: Mon, 09 Jun 2025 14:35:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-10 21:10:47.14046
- Title: A Proposal to Extend the Common Model of Cognition with Metacognition
- Title(参考訳): メタ認知による認知の共通モデルの拡張の提案
- Authors: John Laird, Christian Lebiere, Paul Rosenbloom, Andrea Stocco, Robert Wray,
- Abstract要約: 認知の共通モデルにメタ認知を統合する統一的なアプローチを提案する。
本提案では,CMCの既存の認知機能を活用し,動作メモリ内で利用可能な構造や情報の最小限の拡張を行う。
- 参考スコア(独自算出の注目度): 1.1417805445492082
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Common Model of Cognition (CMC) provides an abstract characterization of the structure and processing required by a cognitive architecture for human-like minds. We propose a unified approach to integrating metacognition within the CMC. We propose that metacognition involves reasoning over explicit representations of an agent's cognitive capabilities and processes in working memory. Our proposal exploits the existing cognitive capabilities of the CMC, making minimal extensions in the structure and information available within working memory. We provide examples of metacognition within our proposal.
- Abstract(参考訳): 共通認知モデル(Common Model of Cognition、CMC)は、人間のような心のための認知アーキテクチャに必要な構造と処理の抽象的な特徴を提供する。
CMCにメタ認知を統合するための統一的なアプローチを提案する。
我々は,作業記憶におけるエージェントの認知能力とプロセスの明示的な表現をメタ認知が引き起こすことを示唆する。
本提案では,CMCの既存の認知機能を活用し,動作メモリ内で利用可能な構造や情報の最小限の拡張を行う。
提案の中でメタ認知の例を挙げる。
関連論文リスト
- Two Experts Are All You Need for Steering Thinking: Reinforcing Cognitive Effort in MoE Reasoning Models Without Additional Training [86.70255651945602]
我々はReinforcecing Cognitive Experts(RICE)と呼ばれる新しい推論時ステアリング手法を導入する。
RICEは、追加のトレーニングや複雑化なしに推論のパフォーマンスを改善することを目的としている。
先行する MoE ベースの LRM を用いた経験的評価は、推論精度、認知効率、ドメイン間の一般化において顕著で一貫した改善を示す。
論文 参考訳(メタデータ) (2025-05-20T17:59:16Z) - Review of Case-Based Reasoning for LLM Agents: Theoretical Foundations, Architectural Components, and Cognitive Integration [0.0]
ケースベース推論(CBR)は、過去の経験を参照することによって、新しい問題を解決する戦略である。
本稿では、過去の経験を参照して新しい問題を解決する戦略であるケースベース推論(CBR)を大規模言語モデルに組み込む方法について考察する。
論文 参考訳(メタデータ) (2025-04-09T14:51:02Z) - Analogical Concept Memory for Architectures Implementing the Common
Model of Cognition [1.9417302920173825]
そこで我々は,Soar の新たなアナログ概念メモリを提案し,宣言的長期記憶の現在のシステムを強化した。
提案したメモリに実装されたアナログ学習手法は,多様な新しい概念を迅速に学習できることを実証する。
論文 参考訳(メタデータ) (2022-10-21T04:39:07Z) - Kernel Based Cognitive Architecture for Autonomous Agents [91.3755431537592]
本稿では,認知機能構築への進化的アプローチについて考察する。
本稿では,シンボル創発問題に基づくエージェントの進化を保証する認知アーキテクチャについて考察する。
論文 参考訳(メタデータ) (2022-07-02T12:41:32Z) - Acquiring and Modelling Abstract Commonsense Knowledge via Conceptualization [49.00409552570441]
本研究では,コモンセンス推論における概念化の役割について検討し,人間の概念化を再現する枠組みを定式化する。
ATOMIC は大規模な人為的注釈付き CKG であり,この枠組みを分類プロベースで支援している。
論文 参考訳(メタデータ) (2022-06-03T12:24:49Z) - CogME: A Cognition-Inspired Multi-Dimensional Evaluation Metric for Story Understanding [19.113385429326808]
本稿では,物語理解に着目したAIモデルを対象とした認知型多次元評価指標であるCogMEを紹介する。
我々は,タスクの性質を理解することに基づくメトリクスの必要性を論じ,人間の認知過程と密接に整合するように設計されている。
このアプローチは、従来の全体的なスコアを超えて洞察を提供し、より高い認知機能をターゲットにしたより洗練されたAI開発のための道を開く。
論文 参考訳(メタデータ) (2021-07-21T02:33:37Z) - Towards a Predictive Processing Implementation of the Common Model of
Cognition [79.63867412771461]
本稿では,ニューラル生成符号化とホログラフィック連想記憶に基づく認知モデルの実装について述べる。
提案システムは,多様なタスクから継続的に学習し,大規模に人的パフォーマンスをモデル化するエージェントを開発するための基盤となる。
論文 参考訳(メタデータ) (2021-05-15T22:55:23Z) - Characterizing an Analogical Concept Memory for Architectures
Implementing the Common Model of Cognition [1.468003557277553]
そこで我々は,Soar の新たなアナログ概念メモリを提案し,宣言的長期記憶の現在のシステムを強化した。
提案したメモリに実装されたアナログ学習手法は,多様な新しい概念を迅速に学習できることを実証する。
論文 参考訳(メタデータ) (2020-06-02T21:54:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。