論文の概要: Review of Case-Based Reasoning for LLM Agents: Theoretical Foundations, Architectural Components, and Cognitive Integration
- arxiv url: http://arxiv.org/abs/2504.06943v2
- Date: Fri, 11 Apr 2025 05:34:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-14 10:55:29.382852
- Title: Review of Case-Based Reasoning for LLM Agents: Theoretical Foundations, Architectural Components, and Cognitive Integration
- Title(参考訳): LLMエージェントのケースベース推論:理論的基礎, 構造的構成要素, 認知的統合
- Authors: Kostas Hatalis, Despina Christou, Vyshnavi Kondapalli,
- Abstract要約: ケースベース推論(CBR)は、過去の経験を参照することによって、新しい問題を解決する戦略である。
本稿では、過去の経験を参照して新しい問題を解決する戦略であるケースベース推論(CBR)を大規模言語モデルに組み込む方法について考察する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Agents powered by Large Language Models (LLMs) have recently demonstrated impressive capabilities in various tasks. Still, they face limitations in tasks requiring specific, structured knowledge, flexibility, or accountable decision-making. While agents are capable of perceiving their environments, forming inferences, planning, and executing actions towards goals, they often face issues such as hallucinations and lack of contextual memory across interactions. This paper explores how Case-Based Reasoning (CBR), a strategy that solves new problems by referencing past experiences, can be integrated into LLM agent frameworks. This integration allows LLMs to leverage explicit knowledge, enhancing their effectiveness. We systematically review the theoretical foundations of these enhanced agents, identify critical framework components, and formulate a mathematical model for the CBR processes of case retrieval, adaptation, and learning. We also evaluate CBR-enhanced agents against other methods like Chain-of-Thought reasoning and standard Retrieval-Augmented Generation, analyzing their relative strengths. Moreover, we explore how leveraging CBR's cognitive dimensions (including self-reflection, introspection, and curiosity) via goal-driven autonomy mechanisms can further enhance the LLM agent capabilities. Contributing to the ongoing research on neuro-symbolic hybrid systems, this work posits CBR as a viable technique for enhancing the reasoning skills and cognitive aspects of autonomous LLM agents.
- Abstract(参考訳): LLM(Large Language Models)を利用したエージェントは、最近、様々なタスクで印象的な機能を示した。
それでも、特定の、構造化された知識、柔軟性、あるいは説明責任のある意思決定を必要とするタスクの制限に直面しています。
エージェントは環境を認識し、推論、計画、目標に対する行動の実行を行うことができるが、幻覚や相互作用間のコンテキスト記憶の欠如といった問題に直面していることが多い。
本稿では、過去の経験を参照して新しい問題を解決する戦略であるケースベース推論(CBR)をLLMエージェントフレームワークに組み込む方法について検討する。
この統合により、LSMは明示的な知識を活用でき、その効果を高めることができる。
我々はこれらの強化されたエージェントの理論的基礎を体系的にレビューし、重要なフレームワークコンポーネントを特定し、ケース検索、適応、学習のCBRプロセスの数学的モデルを定式化する。
また,CBRにより強化されたエージェントを,チェーン・オブ・ソート(Chain-of-Thought)推論や標準Retrieval-Augmented Generation(Retrieval-Augmented Generation)などの他の手法に対して評価し,それらの相対的強度を解析した。
さらに, CBRの認知的側面(自己回帰, 内省, 好奇心を含む)を, 目標駆動型自律機構を通じて活用することにより, LLMエージェントの能力をさらに向上させる方法について検討する。
この研究は、ニューロシンボリックハイブリッドシステムに関する継続的な研究に寄与し、自律LLMエージェントの推論スキルと認知的側面を高めるための有効な技術としてCBRを仮定している。
関連論文リスト
- A Survey on Large Language Models with some Insights on their Capabilities and Limitations [0.3222802562733786]
大規模言語モデル(LLM)は、様々な言語関連タスクで顕著なパフォーマンスを示す。
LLMは、そのコア機能を超えて、創発的な能力を示す。
本稿では,これらの機能を実現する基盤となるコンポーネント,スケーリング機構,アーキテクチャ戦略について検討する。
論文 参考訳(メタデータ) (2025-01-03T21:04:49Z) - Practical Considerations for Agentic LLM Systems [5.455744338342196]
本稿では、確立されたアプリケーションパラダイムの文脈における研究コミュニティからの実行可能な洞察と考察について述べる。
すなわち、アプリケーション中心の文献における一般的な実践に基づいて、関連する研究成果を4つの幅広いカテゴリ – プランニング、メモリツール、コントロールフロー – に位置づける。
論文 参考訳(メタデータ) (2024-12-05T11:57:49Z) - APT: Architectural Planning and Text-to-Blueprint Construction Using Large Language Models for Open-World Agents [8.479128275067742]
本稿では,自律型エージェントによるMinecraftの複雑な構造構築を可能にする,LLM(Large Language Model)駆動のフレームワークを提案する。
連鎖分解とマルチモーダル入力を用いることで、このフレームワークは詳細なアーキテクチャレイアウトと青写真を生成する。
本エージェントは, メモリとリフレクションモジュールの両方を組み込んで, 生涯学習, 適応的洗練, エラー訂正を容易にする。
論文 参考訳(メタデータ) (2024-11-26T09:31:28Z) - Language Agents Meet Causality -- Bridging LLMs and Causal World Models [50.79984529172807]
因果表現学習を大規模言語モデルと統合する枠組みを提案する。
このフレームワークは、自然言語表現に関連付けられた因果変数を持つ因果世界モデルを学ぶ。
本研究では,時間的スケールと環境の複雑さを考慮した因果推論と計画課題の枠組みを評価する。
論文 参考訳(メタデータ) (2024-10-25T18:36:37Z) - Unveiling and Consulting Core Experts in Retrieval-Augmented MoE-based LLMs [64.9693406713216]
RAGシステムの有効性に寄与する内部メカニズムは未解明のままである。
実験の結果,複数のコアグループの専門家がRAG関連行動に主に関与していることが判明した。
本稿では,専門家の活性化を通じてRAGの効率性と有効性を高めるためのいくつかの戦略を提案する。
論文 参考訳(メタデータ) (2024-10-20T16:08:54Z) - Make LLMs better zero-shot reasoners: Structure-orientated autonomous reasoning [52.83539473110143]
本稿では,Large Language Models (LLM) の質問をよりよく理解するための構造指向分析手法を提案する。
複雑な質問応答タスクの信頼性をさらに向上するために,多エージェント推論システム,構造指向自律推論エージェント(SARA)を提案する。
大規模な実験により,提案システムの有効性が検証された。
論文 参考訳(メタデータ) (2024-10-18T05:30:33Z) - RAG-Modulo: Solving Sequential Tasks using Experience, Critics, and Language Models [5.0741409008225755]
大規模言語モデル(LLM)は、ロボットの課題を解決するための有望なツールとして登場した。
既存のLSMベースのエージェントは、過去の相互作用を維持および学習する能力に欠ける。
RAG-Modulo は,過去のインタラクションを記憶した LLM ベースのエージェントを強化し,エージェントの判断を評価するための批判を取り入れたフレームワークである。
論文 参考訳(メタデータ) (2024-09-18T20:03:32Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTRは、ヒトに適応し、多目的な意思決定を提供する新しいニューロシンボリックアーキテクチャである。
我々のフレームワークは、ACT-Rの内部決定過程の知識を潜在神経表現として抽出し、組み込む。
デザイン・フォー・マニュファクチャリング・タスクに関する我々の実験は、タスク性能の向上と基礎的意思決定能力の向上を両立させたものである。
論文 参考訳(メタデータ) (2024-08-17T11:49:53Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
大規模言語モデル(LLM)は、問題解決と意思決定の能力の向上を示している。
本稿ではメタ推論技術を必要とするプロセスベースのベンチマークMR-Benを提案する。
メタ推論のパラダイムは,システム2のスロー思考に特に適しています。
論文 参考訳(メタデータ) (2024-06-20T03:50:23Z) - Self-RAG: Learning to Retrieve, Generate, and Critique through
Self-Reflection [74.51523859064802]
我々は、自己回帰検索拡張生成(Self-RAG)と呼ばれる新しいフレームワークを導入する。
自己RAGは、検索と自己回帰によってLMの品質と事実性を高める。
様々なタスクセットにおいて、最先端のLCMや検索強化モデルよりも大幅に優れています。
論文 参考訳(メタデータ) (2023-10-17T18:18:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。