論文の概要: Review of Case-Based Reasoning for LLM Agents: Theoretical Foundations, Architectural Components, and Cognitive Integration
- arxiv url: http://arxiv.org/abs/2504.06943v2
- Date: Fri, 11 Apr 2025 05:34:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-21 13:32:44.717561
- Title: Review of Case-Based Reasoning for LLM Agents: Theoretical Foundations, Architectural Components, and Cognitive Integration
- Title(参考訳): LLMエージェントのケースベース推論:理論的基礎, 構造的構成要素, 認知的統合
- Authors: Kostas Hatalis, Despina Christou, Vyshnavi Kondapalli,
- Abstract要約: ケースベース推論(CBR)は、過去の経験を参照することによって、新しい問題を解決する戦略である。
本稿では、過去の経験を参照して新しい問題を解決する戦略であるケースベース推論(CBR)を大規模言語モデルに組み込む方法について考察する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Agents powered by Large Language Models (LLMs) have recently demonstrated impressive capabilities in various tasks. Still, they face limitations in tasks requiring specific, structured knowledge, flexibility, or accountable decision-making. While agents are capable of perceiving their environments, forming inferences, planning, and executing actions towards goals, they often face issues such as hallucinations and lack of contextual memory across interactions. This paper explores how Case-Based Reasoning (CBR), a strategy that solves new problems by referencing past experiences, can be integrated into LLM agent frameworks. This integration allows LLMs to leverage explicit knowledge, enhancing their effectiveness. We systematically review the theoretical foundations of these enhanced agents, identify critical framework components, and formulate a mathematical model for the CBR processes of case retrieval, adaptation, and learning. We also evaluate CBR-enhanced agents against other methods like Chain-of-Thought reasoning and standard Retrieval-Augmented Generation, analyzing their relative strengths. Moreover, we explore how leveraging CBR's cognitive dimensions (including self-reflection, introspection, and curiosity) via goal-driven autonomy mechanisms can further enhance the LLM agent capabilities. Contributing to the ongoing research on neuro-symbolic hybrid systems, this work posits CBR as a viable technique for enhancing the reasoning skills and cognitive aspects of autonomous LLM agents.
- Abstract(参考訳): LLM(Large Language Models)を利用したエージェントは、最近、様々なタスクで印象的な機能を示した。
それでも、特定の、構造化された知識、柔軟性、あるいは説明責任のある意思決定を必要とするタスクの制限に直面しています。
エージェントは環境を認識し、推論、計画、目標に対する行動の実行を行うことができるが、幻覚や相互作用間のコンテキスト記憶の欠如といった問題に直面していることが多い。
本稿では、過去の経験を参照して新しい問題を解決する戦略であるケースベース推論(CBR)をLLMエージェントフレームワークに組み込む方法について検討する。
この統合により、LSMは明示的な知識を活用でき、その効果を高めることができる。
我々はこれらの強化されたエージェントの理論的基礎を体系的にレビューし、重要なフレームワークコンポーネントを特定し、ケース検索、適応、学習のCBRプロセスの数学的モデルを定式化する。
また,CBRにより強化されたエージェントを,チェーン・オブ・ソート(Chain-of-Thought)推論や標準Retrieval-Augmented Generation(Retrieval-Augmented Generation)などの他の手法に対して評価し,それらの相対的強度を解析した。
さらに, CBRの認知的側面(自己回帰, 内省, 好奇心を含む)を, 目標駆動型自律機構を通じて活用することにより, LLMエージェントの能力をさらに向上させる方法について検討する。
この研究は、ニューロシンボリックハイブリッドシステムに関する継続的な研究に寄与し、自律LLMエージェントの推論スキルと認知的側面を高めるための有効な技術としてCBRを仮定している。
関連論文リスト
- A Call for New Recipes to Enhance Spatial Reasoning in MLLMs [85.67171333213301]
MLLM(Multimodal Large Language Models)は、一般的な視覚言語タスクにおいて印象的な性能を示す。
近年の研究では、空間的推論能力の限界が明らかにされている。
この空間的推論の欠如は、MLLMが物理的世界と効果的に相互作用する能力を著しく制限する。
論文 参考訳(メタデータ) (2025-04-21T11:48:39Z) - Meta-Thinking in LLMs via Multi-Agent Reinforcement Learning: A Survey [2.572335031488049]
本稿では,MARL(Multi-Agent Reinforcement Learning)の観点から,大規模言語モデル(LLM)におけるメタ思考機能の開発について検討する。
MARLにおける報酬メカニズム、自己プレー、継続的な学習手法を探求することにより、この調査はイントロスペクティブで適応的で信頼性の高いLLMを構築するための包括的なロードマップを提供する。
論文 参考訳(メタデータ) (2025-04-20T07:34:26Z) - A Survey of Frontiers in LLM Reasoning: Inference Scaling, Learning to Reason, and Agentic Systems [93.8285345915925]
推論(Reasoning)は、論理的推論、問題解決、意思決定を可能にする基本的な認知プロセスである。
大規模言語モデル(LLM)の急速な進歩により、推論は高度なAIシステムを区別する重要な能力として浮上した。
我々は,(1)推論が達成される段階を定義するレジーム,(2)推論プロセスに関与するコンポーネントを決定するアーキテクチャの2つの側面に沿って既存の手法を分類する。
論文 参考訳(メタデータ) (2025-04-12T01:27:49Z) - How do Large Language Models Understand Relevance? A Mechanistic Interpretability Perspective [64.00022624183781]
大規模言語モデル(LLM)は、関連性を評価し、情報検索(IR)タスクをサポートする。
メカニスティック・インタプリタビリティのレンズを用いて,異なるLLMモジュールが関係判断にどのように寄与するかを検討する。
論文 参考訳(メタデータ) (2025-04-10T16:14:55Z) - ReMA: Learning to Meta-think for LLMs with Multi-Agent Reinforcement Learning [54.787341008881036]
Reinforced Meta-thinking Agents(ReMA)は,MARL(Multi-Agent Reinforcement Learning)を利用したメタ思考行動の抽出手法である。
ReMAは、推論プロセスを2つの階層的なエージェントに分解する。戦略上の監視と計画を生成するハイレベルなメタ思考エージェントと、詳細な実行のための低レベルな推論エージェントである。
実験の結果、ReMAは複雑な推論タスクにおいて単一エージェントRLベースラインよりも優れていた。
論文 参考訳(メタデータ) (2025-03-12T16:05:31Z) - A Survey on Large Language Models with some Insights on their Capabilities and Limitations [0.3222802562733786]
大規模言語モデル(LLM)は、様々な言語関連タスクで顕著なパフォーマンスを示す。
LLMは、そのコア機能を超えて、創発的な能力を示す。
本稿では,これらの機能を実現する基盤となるコンポーネント,スケーリング機構,アーキテクチャ戦略について検討する。
論文 参考訳(メタデータ) (2025-01-03T21:04:49Z) - Understanding Ranking LLMs: A Mechanistic Analysis for Information Retrieval [20.353393773305672]
我々は、LLMのランク付けにおけるニューロンの活性化を調べるために、探索に基づく分析を用いる。
本研究は,語彙信号,文書構造,問合せ文書間相互作用,複雑な意味表現など,幅広い機能カテゴリにまたがる。
我々の発見は、より透明で信頼性の高い検索システムを開発するための重要な洞察を提供する。
論文 参考訳(メタデータ) (2024-10-24T08:20:10Z) - Unveiling and Consulting Core Experts in Retrieval-Augmented MoE-based LLMs [64.9693406713216]
RAGシステムの有効性に寄与する内部メカニズムは未解明のままである。
実験の結果,複数のコアグループの専門家がRAG関連行動に主に関与していることが判明した。
本稿では,専門家の活性化を通じてRAGの効率性と有効性を高めるためのいくつかの戦略を提案する。
論文 参考訳(メタデータ) (2024-10-20T16:08:54Z) - GIVE: Structured Reasoning of Large Language Models with Knowledge Graph Inspired Veracity Extrapolation [108.2008975785364]
Graph Inspired Veracity Extrapolation (GIVE)は、パラメトリックメモリと非パラメトリックメモリを融合して、最小の外部入力で正確な推論を改善する新しい推論手法である。
GIVE は LLM エージェントをガイドして,最も関連する専門家データ (observe) を選択し,クエリ固有の発散思考 (reflect) に従事し,その情報を合成して最終的な出力 (speak) を生成する。
論文 参考訳(メタデータ) (2024-10-11T03:05:06Z) - RAG-Modulo: Solving Sequential Tasks using Experience, Critics, and Language Models [5.0741409008225755]
大規模言語モデル(LLM)は、ロボットの課題を解決するための有望なツールとして登場した。
既存のLSMベースのエージェントは、過去の相互作用を維持および学習する能力に欠ける。
RAG-Modulo は,過去のインタラクションを記憶した LLM ベースのエージェントを強化し,エージェントの判断を評価するための批判を取り入れたフレームワークである。
論文 参考訳(メタデータ) (2024-09-18T20:03:32Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTRは、ヒトに適応し、多目的な意思決定を提供する新しいニューロシンボリックアーキテクチャである。
我々のフレームワークは、ACT-Rの内部決定過程の知識を潜在神経表現として抽出し、組み込む。
デザイン・フォー・マニュファクチャリング・タスクに関する我々の実験は、タスク性能の向上と基礎的意思決定能力の向上を両立させたものである。
論文 参考訳(メタデータ) (2024-08-17T11:49:53Z) - Re-TASK: Revisiting LLM Tasks from Capability, Skill, and Knowledge Perspectives [54.14429346914995]
CoT (Chain-of-Thought) は複雑な問題を解決する重要な方法となっている。
大規模言語モデル(LLM)はドメイン固有のタスクを正確に分解するのに苦労することが多い。
本稿では,LLMタスクを能力,スキル,知識の観点から再検討する理論モデルであるRe-TASKフレームワークを紹介する。
論文 参考訳(メタデータ) (2024-08-13T13:58:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。