FunDiff: Diffusion Models over Function Spaces for Physics-Informed Generative Modeling
- URL: http://arxiv.org/abs/2506.07902v1
- Date: Mon, 09 Jun 2025 16:19:59 GMT
- Title: FunDiff: Diffusion Models over Function Spaces for Physics-Informed Generative Modeling
- Authors: Sifan Wang, Zehao Dou, Tong-Rui Liu, Lu Lu,
- Abstract summary: We introduce FunDiff, a novel framework for generative modeling in function spaces.<n>FunDiff combines a latent diffusion process with a function autoencoder architecture to handle input functions.<n>We demonstrate the practical effectiveness of FunDiff across diverse applications in fluid dynamics and solid mechanics.
- Score: 3.6766942024793496
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recent advances in generative modeling -- particularly diffusion models and flow matching -- have achieved remarkable success in synthesizing discrete data such as images and videos. However, adapting these models to physical applications remains challenging, as the quantities of interest are continuous functions governed by complex physical laws. Here, we introduce $\textbf{FunDiff}$, a novel framework for generative modeling in function spaces. FunDiff combines a latent diffusion process with a function autoencoder architecture to handle input functions with varying discretizations, generate continuous functions evaluable at arbitrary locations, and seamlessly incorporate physical priors. These priors are enforced through architectural constraints or physics-informed loss functions, ensuring that generated samples satisfy fundamental physical laws. We theoretically establish minimax optimality guarantees for density estimation in function spaces, showing that diffusion-based estimators achieve optimal convergence rates under suitable regularity conditions. We demonstrate the practical effectiveness of FunDiff across diverse applications in fluid dynamics and solid mechanics. Empirical results show that our method generates physically consistent samples with high fidelity to the target distribution and exhibits robustness to noisy and low-resolution data. Code and datasets are publicly available at https://github.com/sifanexisted/fundiff.
Related papers
- Stochastic and Non-local Closure Modeling for Nonlinear Dynamical Systems via Latent Score-based Generative Models [0.0]
We propose a latent score-based generative AI framework for learning, non-local closure models and laws in nonlinear dynamical systems.<n>This work addresses a key challenge of modeling complex multiscale dynamical systems without a clear scale separation.
arXiv Detail & Related papers (2025-06-25T19:04:02Z) - Consistent World Models via Foresight Diffusion [56.45012929930605]
We argue that a key bottleneck in learning consistent diffusion-based world models lies in the suboptimal predictive ability.<n>We propose Foresight Diffusion (ForeDiff), a diffusion-based world modeling framework that enhances consistency by decoupling condition understanding from target denoising.
arXiv Detail & Related papers (2025-05-22T10:01:59Z) - Dynamical Diffusion: Learning Temporal Dynamics with Diffusion Models [71.63194926457119]
We introduce Dynamical Diffusion (DyDiff), a theoretically sound framework that incorporates temporally aware forward and reverse processes.<n>Experiments across scientifictemporal forecasting, video prediction, and time series forecasting demonstrate that Dynamical Diffusion consistently improves performance in temporal predictive tasks.
arXiv Detail & Related papers (2025-03-02T16:10:32Z) - Foundation Inference Models for Stochastic Differential Equations: A Transformer-based Approach for Zero-shot Function Estimation [3.005912045854039]
We introduce FIM-SDE (Foundation Inference Model for SDEs), a transformer-based recognition model capable of performing accurate zero-shot estimation of the drift and diffusion functions of SDEs.<n>We demonstrate that one and the same (pretrained) FIM-SDE achieves robust zero-shot function estimation across a wide range of synthetic and real-world processes.
arXiv Detail & Related papers (2025-02-26T11:04:02Z) - Derivative-Free Guidance in Continuous and Discrete Diffusion Models with Soft Value-Based Decoding [84.3224556294803]
Diffusion models excel at capturing the natural design spaces of images, molecules, DNA, RNA, and protein sequences.
We aim to optimize downstream reward functions while preserving the naturalness of these design spaces.
Our algorithm integrates soft value functions, which looks ahead to how intermediate noisy states lead to high rewards in the future.
arXiv Detail & Related papers (2024-08-15T16:47:59Z) - Generative Modeling with Phase Stochastic Bridges [49.4474628881673]
Diffusion models (DMs) represent state-of-the-art generative models for continuous inputs.
We introduce a novel generative modeling framework grounded in textbfphase space dynamics
Our framework demonstrates the capability to generate realistic data points at an early stage of dynamics propagation.
arXiv Detail & Related papers (2023-10-11T18:38:28Z) - Hierarchical Integration Diffusion Model for Realistic Image Deblurring [71.76410266003917]
Diffusion models (DMs) have been introduced in image deblurring and exhibited promising performance.
We propose the Hierarchical Integration Diffusion Model (HI-Diff), for realistic image deblurring.
Experiments on synthetic and real-world blur datasets demonstrate that our HI-Diff outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-05-22T12:18:20Z) - Score-based Diffusion Models in Function Space [137.70916238028306]
Diffusion models have recently emerged as a powerful framework for generative modeling.<n>This work introduces a mathematically rigorous framework called Denoising Diffusion Operators (DDOs) for training diffusion models in function space.<n>We show that the corresponding discretized algorithm generates accurate samples at a fixed cost independent of the data resolution.
arXiv Detail & Related papers (2023-02-14T23:50:53Z) - Diffusion Generative Models in Infinite Dimensions [10.15736468214228]
We generalize diffusion generative models to operate directly in function space.
A significant benefit of our function space point of view is that it allows us to explicitly specify the space of functions we are working in.
Our approach allows us to perform both unconditional and conditional generation of function-valued data.
arXiv Detail & Related papers (2022-12-01T21:54:19Z) - A data-driven peridynamic continuum model for upscaling molecular
dynamics [3.1196544696082613]
We propose a learning framework to extract, from molecular dynamics data, an optimal Linear Peridynamic Solid model.
We provide sufficient well-posedness conditions for discretized LPS models with sign-changing influence functions.
This framework guarantees that the resulting model is mathematically well-posed, physically consistent, and that it generalizes well to settings that are different from the ones used during training.
arXiv Detail & Related papers (2021-08-04T07:07:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.