論文の概要: ST-GraphNet: A Spatio-Temporal Graph Neural Network for Understanding and Predicting Automated Vehicle Crash Severity
- arxiv url: http://arxiv.org/abs/2506.08051v1
- Date: Mon, 09 Jun 2025 01:42:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-11 15:11:40.25264
- Title: ST-GraphNet: A Spatio-Temporal Graph Neural Network for Understanding and Predicting Automated Vehicle Crash Severity
- Title(参考訳): ST-GraphNet: 自動衝突の深刻度を理解し予測するための時空間グラフニューラルネットワーク
- Authors: Mahmuda Sultana Mimi, Md Monzurul Islam, Anannya Ghosh Tusti, Shriyank Somvanshi, Subasish Das,
- Abstract要約: 詳細な空間グラフを用いて,自動走行車(AV)の重大度をモデル化し,予測するためのグラフニューラルネットワークフレームワークST-GraphNetを紹介する。
提案したST-GraphNetは97.74%の精度を達成し、最もきめ細かいモデル(64.7%のテスト精度)を大幅に上回っている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding the spatial and temporal dynamics of automated vehicle (AV) crash severity is critical for advancing urban mobility safety and infrastructure planning. In this work, we introduce ST-GraphNet, a spatio-temporal graph neural network framework designed to model and predict AV crash severity by using both fine-grained and region-aggregated spatial graphs. Using a balanced dataset of 2,352 real-world AV-related crash reports from Texas (2024), including geospatial coordinates, crash timestamps, SAE automation levels, and narrative descriptions, we construct two complementary graph representations: (1) a fine-grained graph with individual crash events as nodes, where edges are defined via spatio-temporal proximity; and (2) a coarse-grained graph where crashes are aggregated into Hexagonal Hierarchical Spatial Indexing (H3)-based spatial cells, connected through hexagonal adjacency. Each node in the graph is enriched with multimodal data, including semantic, spatial, and temporal attributes, including textual embeddings from crash narratives using a pretrained Sentence-BERT model. We evaluate various graph neural network (GNN) architectures, such as Graph Convolutional Networks (GCN), Graph Attention Networks (GAT), and Dynamic Spatio-Temporal GCN (DSTGCN), to classify crash severity and predict high-risk regions. Our proposed ST-GraphNet, which utilizes a DSTGCN backbone on the coarse-grained H3 graph, achieves a test accuracy of 97.74\%, substantially outperforming the best fine-grained model (64.7\% test accuracy). These findings highlight the effectiveness of spatial aggregation, dynamic message passing, and multi-modal feature integration in capturing the complex spatio-temporal patterns underlying AV crash severity.
- Abstract(参考訳): 自動走行車(AV)の衝突重大度の空間的・時間的ダイナミクスを理解することは、都市交通安全とインフラ計画の推進に不可欠である。
本研究では, 空間グラフの微細化と領域集約の両方を用いて, AV衝突重大度をモデル化し, 予測するために設計された時空間グラフニューラルネットワークであるST-GraphNetを紹介する。
地理空間座標, クラッシュタイムスタンプ, SAE 自動化レベル, 物語記述を含む,テキサス (2024) の実世界のAV関連クラッシュレポートのバランスの取れたデータセットを用いて, 1) 個々のクラッシュイベントをノードとして, エッジを時空間的に時空間的に定義した細粒度グラフ, (2) ヘキサゴナル階層空間指数 (H3) ベースの空間セルに衝突を集約する粗粒度グラフの2つの相補グラフ表現を構築した。
グラフの各ノードは、事前訓練されたSentence-BERTモデルを使用して、クラッシュ物語からのテキスト埋め込みを含む意味的、空間的、時間的属性を含むマルチモーダルデータでリッチ化される。
我々は,グラフ畳み込みネットワーク(GCN)やグラフ注意ネットワーク(GAT),動的時空間GCN(DSTGCN)などのグラフニューラルネットワーク(GNN)アーキテクチャを評価し,クラッシュの深刻度を分類し,高リスク領域を予測する。
提案するST-GraphNetは、粗粒度H3グラフ上のDSTGCNバックボーンを利用して、97.74\%のテスト精度を達成し、最高の粒度モデル(64.7\%のテスト精度)を大幅に上回っている。
これらの知見は, AV衝突重大性の背景にある複雑な時空間パターンを捉える上で, 空間集合, 動的メッセージパッシング, マルチモーダル特徴統合の有効性を浮き彫りにした。
関連論文リスト
- Graph Transformer GANs with Graph Masked Modeling for Architectural
Layout Generation [153.92387500677023]
本稿では,グラフノード関係を効果的に学習するために,GTGAN(Graph Transformer Generative Adversarial Network)を提案する。
提案したグラフ変換器エンコーダは、局所的およびグローバルな相互作用をモデル化するために、Transformer内のグラフ畳み込みと自己アテンションを組み合わせる。
また,グラフ表現学習のための自己指導型事前学習手法を提案する。
論文 参考訳(メタデータ) (2024-01-15T14:36:38Z) - STG4Traffic: A Survey and Benchmark of Spatial-Temporal Graph Neural Networks for Traffic Prediction [9.467593700532401]
本稿では,グラフ学習戦略と一般的なグラフ畳み込みアルゴリズムの体系的なレビューを行う。
次に、最近提案された空間時間グラフネットワークモデルの長所と短所を包括的に分析する。
ディープラーニングフレームワークPyTorchを用いたSTG4Trafficという研究を構築し,2種類のトラフィックデータセットに対して,標準化されたスケーラブルなベンチマークを確立する。
論文 参考訳(メタデータ) (2023-07-02T06:56:52Z) - Model Inversion Attacks against Graph Neural Networks [65.35955643325038]
グラフニューラルネットワーク(GNN)に対するモデル反転攻撃について検討する。
本稿では,プライベートトレーニンググラフデータを推測するためにGraphMIを提案する。
実験の結果,このような防御効果は十分ではないことが示され,プライバシー攻撃に対するより高度な防御が求められている。
論文 参考訳(メタデータ) (2022-09-16T09:13:43Z) - Spatial-Temporal Adaptive Graph Convolution with Attention Network for
Traffic Forecasting [4.1700160312787125]
交通予測のための新しいネットワークである空間時間適応グラフ畳み込み(STAAN)を提案する。
まず,GCN処理中に事前に定義された行列を使わずに適応的依存行列を採用し,ノード間の依存性を推定する。
第2に,グローバルな依存のために設計されたグラフアテンションネットワークに基づくPWアテンションと,空間ブロックとしてのGCNを統合した。
論文 参考訳(メタデータ) (2022-06-07T09:08:35Z) - Spatio-Temporal Latent Graph Structure Learning for Traffic Forecasting [6.428566223253948]
S-Temporal Latent Graph Structure Learning Network (ST-LGSL) を提案する。
このモデルは多層パーセプトロンとK-Nearest Neighborに基づくグラフを用いて、データ全体から潜在グラフトポロジ情報を学習する。
kNNの接地確率行列に基づく依存関係-kNNと類似度メートル法により、ST-LGSLは地理的およびノード類似度に重点を置くトップを集約する。
論文 参考訳(メタデータ) (2022-02-25T10:02:49Z) - Spatio-Temporal Joint Graph Convolutional Networks for Traffic
Forecasting [75.10017445699532]
近年、時間グラフモデリング問題として交通予測の定式化に焦点が移っている。
本稿では,道路網における交通予測の精度向上のための新しい手法を提案する。
論文 参考訳(メタデータ) (2021-11-25T08:45:14Z) - ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network [72.16255675586089]
本稿では、入力グラフと下流タスクに基づいて最適な曲率を適応的に学習する適応曲率探索ハイパーボリックグラフニューラルネットワークACE-HGNNを提案する。
複数の実世界のグラフデータセットの実験は、競争性能と優れた一般化能力を備えたモデル品質において、顕著で一貫したパフォーマンス改善を示す。
論文 参考訳(メタデータ) (2021-10-15T07:18:57Z) - Spatio-temporal Modeling for Large-scale Vehicular Networks Using Graph
Convolutional Networks [110.80088437391379]
SMARTと呼ばれるグラフベースのフレームワークが提案され、大規模な地理的領域にわたるV2I通信遅延の統計をモデル化し、追跡する。
深層Q-networksアルゴリズムと統合したグラフ畳み込みネットワークを用いたグラフ再構築型手法を開発する。
その結果,提案手法は,モデル化の精度と効率と,大規模車両ネットワークにおける遅延性能を有意に向上させることが示された。
論文 参考訳(メタデータ) (2021-03-13T06:56:29Z) - Structural Temporal Graph Neural Networks for Anomaly Detection in
Dynamic Graphs [54.13919050090926]
本稿では,動的グラフの異常エッジを検出するために,エンドツーエンドの時間構造グラフニューラルネットワークモデルを提案する。
特に,まずターゲットエッジを中心にした$h$ホップ囲むサブグラフを抽出し,各ノードの役割を識別するノードラベル機能を提案する。
抽出した特徴に基づき,GRU(Gated Recurrent Unit)を用いて,異常検出のための時間的情報を取得する。
論文 参考訳(メタデータ) (2020-05-15T09:17:08Z) - Dynamic Spatiotemporal Graph Neural Network with Tensor Network [12.278768477060137]
動的空間グラフ構築は時系列データ問題に対するグラフニューラルネットワーク(GNN)の課題である。
我々は、全ての動的空間関係を収集する空間テンソルグラフ(STG)と、各ノードにおける遅延パターンを見つけるための時間テンソルグラフ(TTG)を生成する。
提案手法の精度と時間的コストを,公共交通データセット上での最先端のGNN手法と比較した。
論文 参考訳(メタデータ) (2020-03-12T20:47:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。