STAMImputer: Spatio-Temporal Attention MoE for Traffic Data Imputation
- URL: http://arxiv.org/abs/2506.08054v2
- Date: Wed, 11 Jun 2025 02:33:59 GMT
- Title: STAMImputer: Spatio-Temporal Attention MoE for Traffic Data Imputation
- Authors: Yiming Wang, Hao Peng, Senzhang Wang, Haohua Du, Chunyang Liu, Jia Wu, Guanlin Wu,
- Abstract summary: Existing time-to-space methods often fail to effectively extract features in block-wise missing data scenarios.<n>This paper proposes a Spatiotemporal Attention Mixture of experts network named STAMImputer for traffic data imputation.<n>The result shows STAMImputer achieves significantly performance improvement compared with existing SOTA approaches.
- Score: 36.880711201508085
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traffic data imputation is fundamentally important to support various applications in intelligent transportation systems such as traffic flow prediction. However, existing time-to-space sequential methods often fail to effectively extract features in block-wise missing data scenarios. Meanwhile, the static graph structure for spatial feature propagation significantly constrains the models flexibility in handling the distribution shift issue for the nonstationary traffic data. To address these issues, this paper proposes a SpatioTemporal Attention Mixture of experts network named STAMImputer for traffic data imputation. Specifically, we introduce a Mixture of Experts (MoE) framework to capture latent spatio-temporal features and their influence weights, effectively imputing block missing. A novel Low-rank guided Sampling Graph ATtention (LrSGAT) mechanism is designed to dynamically balance the local and global correlations across road networks. The sampled attention vectors are utilized to generate dynamic graphs that capture real-time spatial correlations. Extensive experiments are conducted on four traffic datasets for evaluation. The result shows STAMImputer achieves significantly performance improvement compared with existing SOTA approaches. Our codes are available at https://github.com/RingBDStack/STAMImupter.
Related papers
- SFADNet: Spatio-temporal Fused Graph based on Attention Decoupling Network for Traffic Prediction [4.868638426254428]
This paper proposes an innovative traffic flow prediction network, SFADNet, which categorizes traffic flow into multiple traffic patterns based on spatial feature matrices.<n>For each pattern, we construct an independent adaptive-temporal fusion graph based on a cross-attention mechanism, employing residual graph convolution modules and time series modules.<n>Extensive experimental results demonstrate that SFADNet outperforms current state-of-the-art baseline across large four-scale datasets.
arXiv Detail & Related papers (2025-01-07T09:09:50Z) - Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - Navigating Spatio-Temporal Heterogeneity: A Graph Transformer Approach for Traffic Forecasting [13.309018047313801]
Traffic forecasting has emerged as a crucial research area in the development of smart cities.
Recent advancements in network modeling for most-temporal correlations are starting to see diminishing returns in performance.
To tackle these challenges, we introduce the Spatio-Temporal Graph Transformer (STGormer)
We design two straightforward yet effective spatial encoding methods based on the structure and integrate time position into the vanilla transformer to capture-temporal traffic patterns.
arXiv Detail & Related papers (2024-08-20T13:18:21Z) - Dynamic Frequency Domain Graph Convolutional Network for Traffic
Forecasting [33.538633286142264]
Time-Shift of traffic patterns and noise induced by random factors hinder data-driven spatial dependence modeling.
We propose a novel dynamic frequency domain graph convolution network (DFDGCN) to capture spatial dependencies.
Our model is effective and outperforms the baselines in experiments on four real-world datasets.
arXiv Detail & Related papers (2023-12-19T08:20:09Z) - Transport-Hub-Aware Spatial-Temporal Adaptive Graph Transformer for Traffic Flow Prediction [9.99440375621286]
We propose a Transport-Hub-aware spatial-temporal adaptive graph transFormer for traffic flow prediction.<n>Specifically, we first design a novel spatial self-attention module to capture the dynamic spatial dependencies.<n>We also employ a temporal self-attention module to detect dynamic temporal patterns in the traffic flow data.
arXiv Detail & Related papers (2023-10-12T13:44:35Z) - Adaptive Hierarchical SpatioTemporal Network for Traffic Forecasting [70.66710698485745]
We propose an Adaptive Hierarchical SpatioTemporal Network (AHSTN) to promote traffic forecasting.
AHSTN exploits the spatial hierarchy and modeling multi-scale spatial correlations.
Experiments on two real-world datasets show that AHSTN achieves better performance over several strong baselines.
arXiv Detail & Related papers (2023-06-15T14:50:27Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
spatial-temporal Graph Neural Network (GNN) models have emerged as one of the most promising methods to solve this problem.
We propose a novel propagation delay-aware dynamic long-range transFormer, namely PDFormer, for accurate traffic flow prediction.
Our method can not only achieve state-of-the-art performance but also exhibit competitive computational efficiency.
arXiv Detail & Related papers (2023-01-19T08:42:40Z) - STLGRU: Spatio-Temporal Lightweight Graph GRU for Traffic Flow
Prediction [0.40964539027092917]
We propose STLGRU, a novel traffic forecasting model for predicting traffic flow accurately.
Our proposed STLGRU can effectively capture dynamic local and global spatial-temporal relations of traffic networks.
Our method can not only achieve state-of-the-art performance but also exhibit competitive computational efficiency.
arXiv Detail & Related papers (2022-12-08T20:24:59Z) - Correlating sparse sensing for large-scale traffic speed estimation: A
Laplacian-enhanced low-rank tensor kriging approach [76.45949280328838]
We propose a Laplacian enhanced low-rank tensor (LETC) framework featuring both lowrankness and multi-temporal correlations for large-scale traffic speed kriging.
We then design an efficient solution algorithm via several effective numeric techniques to scale up the proposed model to network-wide kriging.
arXiv Detail & Related papers (2022-10-21T07:25:57Z) - D2-TPred: Discontinuous Dependency for Trajectory Prediction under
Traffic Lights [68.76631399516823]
We present a trajectory prediction approach with respect to traffic lights, D2-TPred, using a spatial dynamic interaction graph (SDG) and a behavior dependency graph (BDG)
Our experimental results show that our model achieves more than 20.45% and 20.78% in terms of ADE and FDE, respectively, on VTP-TL.
arXiv Detail & Related papers (2022-07-21T10:19:07Z) - Constructing Geographic and Long-term Temporal Graph for Traffic
Forecasting [88.5550074808201]
We propose Geographic and Long term Temporal Graph Convolutional Recurrent Neural Network (GLT-GCRNN) for traffic forecasting.
In this work, we propose a novel framework for traffic forecasting that learns the rich interactions between roads sharing similar geographic or longterm temporal patterns.
arXiv Detail & Related papers (2020-04-23T03:50:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.