From Data Deluge to Data Curation: A Filtering-WoRA Paradigm for Efficient Text-based Person Search
- URL: http://arxiv.org/abs/2404.10292v3
- Date: Sat, 01 Feb 2025 01:56:33 GMT
- Title: From Data Deluge to Data Curation: A Filtering-WoRA Paradigm for Efficient Text-based Person Search
- Authors: Jintao Sun, Hao Fei, Zhedong Zheng, Gangyi Ding,
- Abstract summary: In text-based person search endeavors, data generation has emerged as a prevailing practice, addressing concerns over privacy preservation and the arduous task of manual annotation.
We observe that only a subset of the data in constructed datasets plays a decisive role.
We introduce a new Filtering-WoRA paradigm, which contains a filtering algorithm to identify this crucial data subset and WoRA learning strategy for light fine-tuning.
- Score: 30.88999109835329
- License:
- Abstract: In text-based person search endeavors, data generation has emerged as a prevailing practice, addressing concerns over privacy preservation and the arduous task of manual annotation. Although the number of synthesized data can be infinite in theory, the scientific conundrum persists that how much generated data optimally fuels subsequent model training. We observe that only a subset of the data in these constructed datasets plays a decisive role. Therefore, we introduce a new Filtering-WoRA paradigm, which contains a filtering algorithm to identify this crucial data subset and WoRA (Weighted Low-Rank Adaptation) learning strategy for light fine-tuning. The filtering algorithm is based on the cross-modality relevance to remove the lots of coarse matching synthesis pairs. As the number of data decreases, we do not need to fine-tune the entire model. Therefore, we propose a WoRA learning strategy to efficiently update a minimal portion of model parameters. WoRA streamlines the learning process, enabling heightened efficiency in extracting knowledge from fewer, yet potent, data instances. Extensive experimentation validates the efficacy of pretraining, where our model achieves advanced and efficient retrieval performance on challenging real-world benchmarks. Notably, on the CUHK-PEDES dataset, we have achieved a competitive mAP of 67.02% while reducing model training time by 19.82%.
Related papers
- Large Language Models and Synthetic Data for Monitoring Dataset Mentions in Research Papers [0.0]
This paper presents a machine learning framework that automates dataset mention detection across research domains.
We employ zero-shot extraction from research papers, an LLM-as-a-Judge for quality assessment, and a reasoning agent for refinement to generate a weakly supervised synthetic dataset.
At inference, a ModernBERT-based classifier efficiently filters dataset mentions, reducing computational overhead while maintaining high recall.
arXiv Detail & Related papers (2025-02-14T16:16:02Z) - Capturing the Temporal Dependence of Training Data Influence [100.91355498124527]
We formalize the concept of trajectory-specific leave-one-out influence, which quantifies the impact of removing a data point during training.
We propose data value embedding, a novel technique enabling efficient approximation of trajectory-specific LOO.
As data value embedding captures training data ordering, it offers valuable insights into model training dynamics.
arXiv Detail & Related papers (2024-12-12T18:28:55Z) - SUDS: A Strategy for Unsupervised Drift Sampling [0.5437605013181142]
Supervised machine learning encounters concept drift, where the data distribution changes over time, degrading performance.
We present the Strategy for Drift Sampling (SUDS), a novel method that selects homogeneous samples for retraining using existing drift detection algorithms.
Our results demonstrate the efficacy of SUDS in optimizing labeled data use in dynamic environments.
arXiv Detail & Related papers (2024-11-05T10:55:29Z) - When to Trust Your Data: Enhancing Dyna-Style Model-Based Reinforcement Learning With Data Filter [7.886307329450978]
Dyna-style algorithms combine two approaches by using simulated data from an estimated environmental model to accelerate model-free training.
Previous works address this issue by using model ensembles or pretraining the estimated model with data collected from the real environment.
We introduce an out-of-distribution data filter that removes simulated data from the estimated model that significantly diverges from data collected in the real environment.
arXiv Detail & Related papers (2024-10-16T01:49:03Z) - Retrieval Instead of Fine-tuning: A Retrieval-based Parameter Ensemble for Zero-shot Learning [22.748835458594744]
We introduce Retrieval-based.
Ensemble (RPE), a new method that creates a vectorized database of.
Low-Rank Adaptations (LoRAs)
RPE minimizes the need for extensive training and eliminates the requirement for labeled data, making it particularly effective for zero-shot learning.
RPE is well-suited for privacy-sensitive domains like healthcare, as it modifies model parameters without accessing raw data.
arXiv Detail & Related papers (2024-10-13T16:28:38Z) - Accelerating Large Language Model Pretraining via LFR Pedagogy: Learn, Focus, and Review [50.78587571704713]
Learn-Focus-Review (LFR) is a dynamic training approach that adapts to the model's learning progress.
LFR tracks the model's learning performance across data blocks (sequences of tokens) and prioritizes revisiting challenging regions of the dataset.
Compared to baseline models trained on the full datasets, LFR consistently achieved lower perplexity and higher accuracy.
arXiv Detail & Related papers (2024-09-10T00:59:18Z) - Scaling Laws for Data Filtering -- Data Curation cannot be Compute Agnostic [99.3682210827572]
Vision-language models (VLMs) are trained for thousands of GPU hours on carefully curated web datasets.
Data curation strategies are typically developed agnostic of the available compute for training.
We introduce neural scaling laws that account for the non-homogeneous nature of web data.
arXiv Detail & Related papers (2024-04-10T17:27:54Z) - Online Importance Sampling for Stochastic Gradient Optimization [33.42221341526944]
We propose a practical algorithm that efficiently computes data importance on-the-fly during training.
We also introduce a novel metric based on the derivative of the loss w.r.t. the network output, designed for mini-batch importance sampling.
arXiv Detail & Related papers (2023-11-24T13:21:35Z) - Improved Distribution Matching for Dataset Condensation [91.55972945798531]
We propose a novel dataset condensation method based on distribution matching.
Our simple yet effective method outperforms most previous optimization-oriented methods with much fewer computational resources.
arXiv Detail & Related papers (2023-07-19T04:07:33Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
We propose omni-supervised learning to exploit reliable samples in a large amount of unlabeled data for network training.
We experimentally verify that the new dataset can significantly improve the ability of the learned FER model.
To tackle this, we propose to apply a dataset distillation strategy to compress the created dataset into several informative class-wise images.
arXiv Detail & Related papers (2020-05-18T09:36:51Z) - Adversarial Filters of Dataset Biases [96.090959788952]
Large neural models have demonstrated human-level performance on language and vision benchmarks.
Their performance degrades considerably on adversarial or out-of-distribution samples.
We propose AFLite, which adversarially filters such dataset biases.
arXiv Detail & Related papers (2020-02-10T21:59:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.