Fully data-driven inverse hyperelasticity with hyper-network neural ODE fields
- URL: http://arxiv.org/abs/2506.08146v2
- Date: Tue, 29 Jul 2025 22:02:24 GMT
- Title: Fully data-driven inverse hyperelasticity with hyper-network neural ODE fields
- Authors: Vahidullah TaƧ, Amirhossein Amiri-Hezaveh, Manuel K. Rausch, Grace N. Bechtel, Francisco Sahli Costabal, Adrian Buganza Tepole,
- Abstract summary: We propose a new framework for identifying mechanical properties of heterogeneous materials without a closed-form equation.<n>A physics-based data-driven method built upon ordinary neural differential equations (NODEs) is employed to discover equations.<n>The proposed approach is robust and general in identifying the mechanical properties of heterogeneous materials with very few assumptions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We propose a new framework for identifying mechanical properties of heterogeneous materials without a closed-form constitutive equation. Given a full-field measurement of the displacement field, for instance as obtained from digital image correlation (DIC), a continuous approximation of the strain field is obtained by training a neural network that incorporates Fourier features to effectively capture sharp gradients in the data. A physics-based data-driven method built upon ordinary neural differential equations (NODEs) is employed to discover constitutive equations. The NODE framework can represent arbitrary materials while satisfying constraints in the theory of constitutive equations by default. To account for heterogeneity, a hyper-network is defined, where the input is the material coordinate system, and the output is the NODE-based constitutive equation. The parameters of the hyper-network are optimized by minimizing a multi-objective loss function that includes penalty terms for violations of the strong form of the equilibrium equations of elasticity and the associated Neumann boundary conditions. We showcase the framework with several numerical examples, including heterogeneity arising from variations in material parameters, spatial transitions from isotropy to anisotropy, material identification in the presence of noise, and, ultimately, application to experimental data. As the numerical results suggest, the proposed approach is robust and general in identifying the mechanical properties of heterogeneous materials with very few assumptions, making it a suitable alternative to classical inverse methods.
Related papers
- Geometry aware inference of steady state PDEs using Equivariant Neural Fields representations [0.0]
We introduce enf2enf, an encoder--decoder methodology for predicting steady-state Partial Differential Equations.<n>Our method supports real time inference and zero-shot super-resolution, enabling efficient training on low-resolution meshes.
arXiv Detail & Related papers (2025-04-24T08:30:32Z) - A Data-Driven Framework for Discovering Fractional Differential Equations in Complex Systems [8.206685537936078]
This study introduces a stepwise data-driven framework for discovering fractional differential equations (FDEs) directly from data.<n>Our framework applies deep neural networks as surrogate models for denoising and reconstructing sparse and noisy observations.<n>We validate the framework across various datasets, including synthetic anomalous diffusion data and experimental data on the creep behavior of frozen soils.
arXiv Detail & Related papers (2024-12-05T08:38:30Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - Physics-informed UNets for Discovering Hidden Elasticity in
Heterogeneous Materials [0.0]
We develop a novel UNet-based neural network model for inversion in elasticity (El-UNet)
We show superior performance, both in terms of accuracy and computational cost, by El-UNet compared to fully-connected physics-informed neural networks.
arXiv Detail & Related papers (2023-06-01T23:35:03Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - WeakIdent: Weak formulation for Identifying Differential Equations using
Narrow-fit and Trimming [5.027714423258538]
We propose a general and robust framework to recover differential equations using a weak formulation.
For each sparsity level, Subspace Pursuit is utilized to find an initial set of support from the large dictionary.
The proposed method gives a robust recovery of the coefficients, and a significant denoising effect which can handle up to $100%$ noise-to-signal ratio.
arXiv Detail & Related papers (2022-11-06T14:33:22Z) - Equivariant Graph Mechanics Networks with Constraints [83.38709956935095]
We propose Graph Mechanics Network (GMN) which is efficient, equivariant and constraint-aware.
GMN represents, by generalized coordinates, the forward kinematics information (positions and velocities) of a structural object.
Extensive experiments support the advantages of GMN compared to the state-of-the-art GNNs in terms of prediction accuracy, constraint satisfaction and data efficiency.
arXiv Detail & Related papers (2022-03-12T14:22:14Z) - Message Passing Neural PDE Solvers [60.77761603258397]
We build a neural message passing solver, replacing allally designed components in the graph with backprop-optimized neural function approximators.
We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes.
We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D.
arXiv Detail & Related papers (2022-02-07T17:47:46Z) - A deep learning driven pseudospectral PCE based FFT homogenization
algorithm for complex microstructures [68.8204255655161]
It is shown that the proposed method is able to predict central moments of interest while being magnitudes faster to evaluate than traditional approaches.
It is shown, that the proposed method is able to predict central moments of interest while being magnitudes faster to evaluate than traditional approaches.
arXiv Detail & Related papers (2021-10-26T07:02:14Z) - Automatically Polyconvex Strain Energy Functions using Neural Ordinary
Differential Equations [0.0]
Deep neural networks are able to learn complex material without the constraints of form approximations.
N-ODE material model is able to capture synthetic data generated from closedform material models.
framework can be used to model a large class of materials.
arXiv Detail & Related papers (2021-10-03T13:11:43Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.