Spectral Domain Neural Reconstruction for Passband FMCW Radars
- URL: http://arxiv.org/abs/2506.08163v1
- Date: Mon, 09 Jun 2025 19:21:27 GMT
- Title: Spectral Domain Neural Reconstruction for Passband FMCW Radars
- Authors: Harshvardhan Takawale, Nirupam Roy,
- Abstract summary: We present SpINRv2, a neural framework for high-fidelity volumetric reconstruction using Frequency-Modulated Continuous-Wave radar.<n>Our core contribution is a fully differentiable frequency-domain forward model that captures the complex radar response using closed-form synthesis.<n>We introduce sparsity and regularization to disambiguate sub-bin ambiguities that arise at fine range resolutions.
- Score: 0.15193212081459279
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present SpINRv2, a neural framework for high-fidelity volumetric reconstruction using Frequency-Modulated Continuous-Wave (FMCW) radar. Extending our prior work (SpINR), this version introduces enhancements that allow accurate learning under high start frequencies-where phase aliasing and sub-bin ambiguity become prominent. Our core contribution is a fully differentiable frequency-domain forward model that captures the complex radar response using closed-form synthesis, paired with an implicit neural representation (INR) for continuous volumetric scene modeling. Unlike time-domain baselines, SpINRv2 directly supervises the complex frequency spectrum, preserving spectral fidelity while drastically reducing computational overhead. Additionally, we introduce sparsity and smoothness regularization to disambiguate sub-bin ambiguities that arise at fine range resolutions. Experimental results show that SpINRv2 significantly outperforms both classical and learning-based baselines, especially under high-frequency regimes, establishing a new benchmark for neural radar-based 3D imaging.
Related papers
- SpINR: Neural Volumetric Reconstruction for FMCW Radars [0.15193212081459279]
We introduce SpINR, a novel framework for volumetric reconstruction using Frequency-Modulated Continuous-Wave (FMCW) radar data.<n>We demonstrate that SpINR significantly outperforms classical backprojection methods and existing learning-based approaches.
arXiv Detail & Related papers (2025-03-30T04:44:57Z) - Range and Angle Estimation with Spiking Neural Resonators for FMCW Radar [16.91912935835324]
Automotive radar systems face the challenge of managing high sampling rates and large data bandwidth.<n>Neuromorphic computing offers promising solutions because of its inherent energy efficiency and parallel processing capacity.<n>This research presents a novel spiking neuron model for signal processing of frequency-modulated continuous wave (FMCW) radars.
arXiv Detail & Related papers (2025-03-02T13:51:03Z) - Few-shot NeRF by Adaptive Rendering Loss Regularization [78.50710219013301]
Novel view synthesis with sparse inputs poses great challenges to Neural Radiance Field (NeRF)
Recent works demonstrate that the frequency regularization of Positional rendering can achieve promising results for few-shot NeRF.
We propose Adaptive Rendering loss regularization for few-shot NeRF, dubbed AR-NeRF.
arXiv Detail & Related papers (2024-10-23T13:05:26Z) - FreqINR: Frequency Consistency for Implicit Neural Representation with Adaptive DCT Frequency Loss [5.349799154834945]
This paper introduces Frequency Consistency for Implicit Neural Representation (FreqINR), an innovative Arbitrary-scale Super-resolution method.
During training, we employ Adaptive Discrete Cosine Transform Frequency Loss (ADFL) to minimize the frequency gap between HR and ground-truth images.
During inference, we extend the receptive field to preserve spectral coherence between low-resolution (LR) and ground-truth images.
arXiv Detail & Related papers (2024-08-25T03:53:17Z) - Frequency-Assisted Mamba for Remote Sensing Image Super-Resolution [49.902047563260496]
We develop the first attempt to integrate the Vision State Space Model (Mamba) for remote sensing image (RSI) super-resolution.
To achieve better SR reconstruction, building upon Mamba, we devise a Frequency-assisted Mamba framework, dubbed FMSR.
Our FMSR features a multi-level fusion architecture equipped with the Frequency Selection Module (FSM), Vision State Space Module (VSSM), and Hybrid Gate Module (HGM)
arXiv Detail & Related papers (2024-05-08T11:09:24Z) - FreGS: 3D Gaussian Splatting with Progressive Frequency Regularization [67.47895278233717]
We develop a progressive frequency regularization technique to tackle the over-reconstruction issue within the frequency space.
FreGS achieves superior novel view synthesis and outperforms the state-of-the-art consistently.
arXiv Detail & Related papers (2024-03-11T17:00:27Z) - NeuRBF: A Neural Fields Representation with Adaptive Radial Basis
Functions [93.02515761070201]
We present a novel type of neural fields that uses general radial bases for signal representation.
Our method builds upon general radial bases with flexible kernel position and shape, which have higher spatial adaptivity and can more closely fit target signals.
When applied to neural radiance field reconstruction, our method achieves state-of-the-art rendering quality, with small model size and comparable training speed.
arXiv Detail & Related papers (2023-09-27T06:32:05Z) - WaveNeRF: Wavelet-based Generalizable Neural Radiance Fields [149.2296890464997]
We design WaveNeRF, which integrates wavelet frequency decomposition into MVS and NeRF.
WaveNeRF achieves superior generalizable radiance field modeling when only given three images as input.
arXiv Detail & Related papers (2023-08-09T09:24:56Z) - Image Reconstruction for Accelerated MR Scan with Faster Fourier
Convolutional Neural Networks [87.87578529398019]
Partial scan is a common approach to accelerate Magnetic Resonance Imaging (MRI) data acquisition in both 2D and 3D settings.
We propose a novel convolutional operator called Faster Fourier Convolution (FasterFC) to replace the two consecutive convolution operations.
A 2D accelerated MRI method, FasterFC-End-to-End-VarNet, which uses FasterFC to improve the sensitivity maps and reconstruction quality.
A 3D accelerated MRI method called FasterFC-based Single-to-group Network (FAS-Net) that utilizes a single-to-group algorithm to guide k-space domain reconstruction
arXiv Detail & Related papers (2023-06-05T13:53:57Z) - Aug-NeRF: Training Stronger Neural Radiance Fields with Triple-Level
Physically-Grounded Augmentations [111.08941206369508]
We propose Augmented NeRF (Aug-NeRF), which for the first time brings the power of robust data augmentations into regularizing the NeRF training.
Our proposal learns to seamlessly blend worst-case perturbations into three distinct levels of the NeRF pipeline.
Aug-NeRF effectively boosts NeRF performance in both novel view synthesis and underlying geometry reconstruction.
arXiv Detail & Related papers (2022-07-04T02:27:07Z) - Accurate and Robust Deep Learning Framework for Solving Wave-Based
Inverse Problems in the Super-Resolution Regime [1.933681537640272]
We propose an end-to-end deep learning framework that comprehensively solves the inverse wave scattering problem across all length scales.
Our framework consists of the newly introduced wide-band butterfly network coupled with a simple training procedure that dynamically injects noise during training.
arXiv Detail & Related papers (2021-06-02T13:30:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.