Federated Learning on Stochastic Neural Networks
- URL: http://arxiv.org/abs/2506.08169v1
- Date: Mon, 09 Jun 2025 19:28:39 GMT
- Title: Federated Learning on Stochastic Neural Networks
- Authors: Jingqiao Tang, Ryan Bausback, Feng Bao, Richard Archibald,
- Abstract summary: We propose the use of a neural network as the local model within the federated learning framework.<n>We will present experiments demonstrating our method, particularly in handling non-independent and identically distributed data.
- Score: 0.6946171342088935
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated learning is a machine learning paradigm that leverages edge computing on client devices to optimize models while maintaining user privacy by ensuring that local data remains on the device. However, since all data is collected by clients, federated learning is susceptible to latent noise in local datasets. Factors such as limited measurement capabilities or human errors may introduce inaccuracies in client data. To address this challenge, we propose the use of a stochastic neural network as the local model within the federated learning framework. Stochastic neural networks not only facilitate the estimation of the true underlying states of the data but also enable the quantification of latent noise. We refer to our federated learning approach, which incorporates stochastic neural networks as local models, as Federated stochastic neural networks. We will present numerical experiments demonstrating the performance and effectiveness of our method, particularly in handling non-independent and identically distributed data.
Related papers
- FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
Federated learning is an emerging distributed machine learning method.
We propose a heterogeneous local variant of AMSGrad, named FedLALR, in which each client adjusts its learning rate.
We show that our client-specified auto-tuned learning rate scheduling can converge and achieve linear speedup with respect to the number of clients.
arXiv Detail & Related papers (2023-09-18T12:35:05Z) - FedClassAvg: Local Representation Learning for Personalized Federated
Learning on Heterogeneous Neural Networks [21.613436984547917]
We propose a novel personalized federated learning method called federated classifier averaging (FedClassAvg)
FedClassAvg aggregates weights as an agreement on decision boundaries on feature spaces.
We demonstrate it outperforms the current state-of-the-art algorithms on heterogeneous personalized federated learning tasks.
arXiv Detail & Related papers (2022-10-25T08:32:08Z) - Federated Stochastic Gradient Descent Begets Self-Induced Momentum [151.4322255230084]
Federated learning (FL) is an emerging machine learning method that can be applied in mobile edge systems.
We show that running to the gradient descent (SGD) in such a setting can be viewed as adding a momentum-like term to the global aggregation process.
arXiv Detail & Related papers (2022-02-17T02:01:37Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - A Personalized Federated Learning Algorithm: an Application in Anomaly
Detection [0.6700873164609007]
Federated Learning (FL) has recently emerged as a promising method to overcome data privacy and transmission issues.
In FL, datasets collected from different devices or sensors are used to train local models (clients) each of which shares its learning with a centralized model (server)
This paper proposes a novel Personalized FedAvg (PC-FedAvg) which aims to control weights communication and aggregation augmented with a tailored learning algorithm to personalize the resulting models at each client.
arXiv Detail & Related papers (2021-11-04T04:57:11Z) - Decentralized federated learning of deep neural networks on non-iid data [0.6335848702857039]
We tackle the non-problem of learning a personalized deep learning model in a decentralized setting.
We propose a method named Performance-Based Neighbor Selection (PENS) where clients with similar data detect each other and cooperate.
PENS is able to achieve higher accuracies as compared to strong baselines.
arXiv Detail & Related papers (2021-07-18T19:05:44Z) - FF-NSL: Feed-Forward Neural-Symbolic Learner [70.978007919101]
This paper introduces a neural-symbolic learning framework, called Feed-Forward Neural-Symbolic Learner (FF-NSL)
FF-NSL integrates state-of-the-art ILP systems based on the Answer Set semantics, with neural networks, in order to learn interpretable hypotheses from labelled unstructured data.
arXiv Detail & Related papers (2021-06-24T15:38:34Z) - Locally Sparse Networks for Interpretable Predictions [7.362415721170984]
We propose a framework for training locally sparse neural networks where the local sparsity is learned via a sample-specific gating mechanism.
The sample-specific sparsity is predicted via a textitgating network, which is trained in tandem with the textitprediction network.
We demonstrate that our method outperforms state-of-the-art models when predicting the target function with far fewer features per instance.
arXiv Detail & Related papers (2021-06-11T15:46:50Z) - Clustered Federated Learning via Generalized Total Variation
Minimization [83.26141667853057]
We study optimization methods to train local (or personalized) models for local datasets with a decentralized network structure.
Our main conceptual contribution is to formulate federated learning as total variation minimization (GTV)
Our main algorithmic contribution is a fully decentralized federated learning algorithm.
arXiv Detail & Related papers (2021-05-26T18:07:19Z) - MLDS: A Dataset for Weight-Space Analysis of Neural Networks [0.0]
We present MLDS, a new dataset consisting of thousands of trained neural networks with carefully controlled parameters.
This dataset enables new insights into both model-to-model and model-to-training-data relationships.
arXiv Detail & Related papers (2021-04-21T14:24:26Z) - Exploiting Shared Representations for Personalized Federated Learning [54.65133770989836]
We propose a novel federated learning framework and algorithm for learning a shared data representation across clients and unique local heads for each client.
Our algorithm harnesses the distributed computational power across clients to perform many local-updates with respect to the low-dimensional local parameters for every update of the representation.
This result is of interest beyond federated learning to a broad class of problems in which we aim to learn a shared low-dimensional representation among data distributions.
arXiv Detail & Related papers (2021-02-14T05:36:25Z) - Straggler-Resilient Federated Learning: Leveraging the Interplay Between
Statistical Accuracy and System Heterogeneity [57.275753974812666]
Federated learning involves learning from data samples distributed across a network of clients while the data remains local.
In this paper, we propose a novel straggler-resilient federated learning method that incorporates statistical characteristics of the clients' data to adaptively select the clients in order to speed up the learning procedure.
arXiv Detail & Related papers (2020-12-28T19:21:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.