From Debate to Equilibrium: Belief-Driven Multi-Agent LLM Reasoning via Bayesian Nash Equilibrium
- URL: http://arxiv.org/abs/2506.08292v1
- Date: Mon, 09 Jun 2025 23:49:14 GMT
- Title: From Debate to Equilibrium: Belief-Driven Multi-Agent LLM Reasoning via Bayesian Nash Equilibrium
- Authors: Xie Yi, Zhanke Zhou, Chentao Cao, Qiyu Niu, Tongliang Liu, Bo Han,
- Abstract summary: Multi-agent frameworks can boost the reasoning power of large language models (LLMs), but they typically incur heavy computational costs and lack convergence guarantees.<n>We recast multi-LLM coordination as an incomplete-information game and seek a Bayesian Nash equilibrium (BNE)<n>We introduce Efficient Coordination via Nash Equilibrium (ECON), a hierarchical reinforcement-learning paradigm that marries distributed reasoning with centralized final output.
- Score: 52.28048367430481
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-agent frameworks can substantially boost the reasoning power of large language models (LLMs), but they typically incur heavy computational costs and lack convergence guarantees. To overcome these challenges, we recast multi-LLM coordination as an incomplete-information game and seek a Bayesian Nash equilibrium (BNE), in which each agent optimally responds to its probabilistic beliefs about the strategies of others. We introduce Efficient Coordination via Nash Equilibrium (ECON), a hierarchical reinforcement-learning paradigm that marries distributed reasoning with centralized final output. Under ECON, each LLM independently selects responses that maximize its expected reward, conditioned on its beliefs about co-agents, without requiring costly inter-agent exchanges. We mathematically prove that ECON attains a markedly tighter regret bound than non-equilibrium multi-agent schemes. Empirically, ECON outperforms existing multi-LLM approaches by 11.2% on average across six benchmarks spanning complex reasoning and planning tasks. Further experiments demonstrate ECON's ability to flexibly incorporate additional models, confirming its scalability and paving the way toward larger, more powerful multi-LLM ensembles. The code is publicly available at: https://github.com/tmlr-group/ECON.
Related papers
- Everyone Contributes! Incentivizing Strategic Cooperation in Multi-LLM Systems via Sequential Public Goods Games [4.3891974840097925]
Multi-Agent Cooperation Sequential Public Goods Game (MAC-SPGG)<n>We introduce a novel, game-theoretically grounded reinforcement learning framework, to systematically incentivize cooperation in multi-LLM ensembles.<n>Our results highlight the power of structured, incentive-aligned MAC-SPGG cooperation for scalable and robust multi-agent language generation.
arXiv Detail & Related papers (2025-08-04T05:36:07Z) - Reasoning Like an Economist: Post-Training on Economic Problems Induces Strategic Generalization in LLMs [25.067282214293904]
This paper explores whether post-training techniques, specifically Supervised Fine-Tuning (SFT) and Reinforcement Learning with Verifiable Rewards (RLVR), can effectively $textitgeneralize$ to multi-agent scenarios.<n>We use economic reasoning as a testbed, leveraging its strong foundations in mathematics and game theory.<n> Comprehensive evaluation on economic reasoning benchmarks and multi-agent games reveals clear improvements in structured reasoning and economic rationality.
arXiv Detail & Related papers (2025-05-31T14:22:40Z) - Why Ask One When You Can Ask $k$? Two-Stage Learning-to-Defer to the Top-$k$ Experts [3.6787328174619254]
We introduce the first framework for Top-$k$ Learning-to-Defer, enabling systems to defer each query to the $k$ most cost-effective experts.<n>We propose Top-$k(x)$ Learning-to-Defer, an adaptive extension that learns the optimal number of experts per query based on input complexity, expert quality, and consultation cost.
arXiv Detail & Related papers (2025-04-17T14:50:40Z) - Vairiational Stochastic Games [1.6703448188585752]
We propose a novel variational inference framework tailored to decentralized multi-agent systems.<n>Our framework addresses the challenges posed by non-stationarity and unaligned agent objectives.<n>We demonstrate theoretical convergence guarantees for the proposed decentralized algorithms.
arXiv Detail & Related papers (2025-03-08T03:21:23Z) - Symbolic Mixture-of-Experts: Adaptive Skill-based Routing for Heterogeneous Reasoning [76.10639521319382]
We propose Symbolic-MoE, a symbolic, text-based, and gradient-free Mixture-of-Experts framework.<n>We show Symbolic-MoE beats strong LLMs like GPT4o-mini, as well as multi-agent approaches, with an absolute avg. gain of 8.15% over the best multi-agent baseline.
arXiv Detail & Related papers (2025-03-07T18:03:13Z) - Principal-Agent Reinforcement Learning: Orchestrating AI Agents with Contracts [20.8288955218712]
We propose a framework where a principal guides an agent in a Markov Decision Process (MDP) using a series of contracts.
We present and analyze a meta-algorithm that iteratively optimize the policies of the principal and agent.
We then scale our algorithm with deep Q-learning and analyze its convergence in the presence of approximation error.
arXiv Detail & Related papers (2024-07-25T14:28:58Z) - Cooperate or Collapse: Emergence of Sustainable Cooperation in a Society of LLM Agents [101.17919953243107]
GovSim is a generative simulation platform designed to study strategic interactions and cooperative decision-making in large language models (LLMs)<n>We find that all but the most powerful LLM agents fail to achieve a sustainable equilibrium in GovSim, with the highest survival rate below 54%.<n>We show that agents that leverage "Universalization"-based reasoning, a theory of moral thinking, are able to achieve significantly better sustainability.
arXiv Detail & Related papers (2024-04-25T15:59:16Z) - ReConcile: Round-Table Conference Improves Reasoning via Consensus among Diverse LLMs [61.07130026622437]
Large Language Models (LLMs) still struggle with natural language reasoning tasks.
Motivated by the society of minds, we propose ReConcile.
A multi-model multi-agent framework designed as a round table conference among diverse LLM agents.
arXiv Detail & Related papers (2023-09-22T17:12:45Z) - Maximum Entropy Heterogeneous-Agent Reinforcement Learning [45.377385280485065]
Multi-agent reinforcement learning (MARL) has been shown effective for cooperative games in recent years.<n>We propose a unified framework for learning policies to resolve issues related to sample complexity, training instability, and the risk of converging to a suboptimal Nash Equilibrium.<n>Based on the MaxEnt framework, we propose Heterogeneous-Agent Soft Actor-Critic (HASAC) algorithm.<n>We evaluate HASAC on six benchmarks: Bi-DexHands, Multi-Agent MuJoCo, StarCraft Challenge, Google Research Football, Multi-Agent Particle Environment, and Light Aircraft Game.
arXiv Detail & Related papers (2023-06-19T06:22:02Z) - Inducing Stackelberg Equilibrium through Spatio-Temporal Sequential
Decision-Making in Multi-Agent Reinforcement Learning [17.101534531286298]
We construct a Nash-level policy model based on a conditional hypernetwork shared by all agents.
This approach allows for asymmetric training with symmetric execution, with each agent responding optimally conditioned on the decisions made by superior agents.
Experiments demonstrate that our method effectively converges to the SE policies in repeated matrix game scenarios.
arXiv Detail & Related papers (2023-04-20T14:47:54Z) - Efficient Model-based Multi-agent Reinforcement Learning via Optimistic
Equilibrium Computation [93.52573037053449]
H-MARL (Hallucinated Multi-Agent Reinforcement Learning) learns successful equilibrium policies after a few interactions with the environment.
We demonstrate our approach experimentally on an autonomous driving simulation benchmark.
arXiv Detail & Related papers (2022-03-14T17:24:03Z) - Finding General Equilibria in Many-Agent Economic Simulations Using Deep
Reinforcement Learning [72.23843557783533]
We show that deep reinforcement learning can discover stable solutions that are epsilon-Nash equilibria for a meta-game over agent types.
Our approach is more flexible and does not need unrealistic assumptions, e.g., market clearing.
We demonstrate our approach in real-business-cycle models, a representative family of DGE models, with 100 worker-consumers, 10 firms, and a government who taxes and redistributes.
arXiv Detail & Related papers (2022-01-03T17:00:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.