Inducing Stackelberg Equilibrium through Spatio-Temporal Sequential
Decision-Making in Multi-Agent Reinforcement Learning
- URL: http://arxiv.org/abs/2304.10351v2
- Date: Mon, 11 Dec 2023 02:35:42 GMT
- Title: Inducing Stackelberg Equilibrium through Spatio-Temporal Sequential
Decision-Making in Multi-Agent Reinforcement Learning
- Authors: Bin Zhang, Lijuan Li, Zhiwei Xu, Dapeng Li and Guoliang Fan
- Abstract summary: We construct a Nash-level policy model based on a conditional hypernetwork shared by all agents.
This approach allows for asymmetric training with symmetric execution, with each agent responding optimally conditioned on the decisions made by superior agents.
Experiments demonstrate that our method effectively converges to the SE policies in repeated matrix game scenarios.
- Score: 17.101534531286298
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In multi-agent reinforcement learning (MARL), self-interested agents attempt
to establish equilibrium and achieve coordination depending on game structure.
However, existing MARL approaches are mostly bound by the simultaneous actions
of all agents in the Markov game (MG) framework, and few works consider the
formation of equilibrium strategies via asynchronous action coordination. In
view of the advantages of Stackelberg equilibrium (SE) over Nash equilibrium,
we construct a spatio-temporal sequential decision-making structure derived
from the MG and propose an N-level policy model based on a conditional
hypernetwork shared by all agents. This approach allows for asymmetric training
with symmetric execution, with each agent responding optimally conditioned on
the decisions made by superior agents. Agents can learn heterogeneous SE
policies while still maintaining parameter sharing, which leads to reduced cost
for learning and storage and enhanced scalability as the number of agents
increases. Experiments demonstrate that our method effectively converges to the
SE policies in repeated matrix game scenarios, and performs admirably in
immensely complex settings including cooperative tasks and mixed tasks.
Related papers
- Principal-Agent Reinforcement Learning: Orchestrating AI Agents with Contracts [20.8288955218712]
We propose a framework where a principal guides an agent in a Markov Decision Process (MDP) using a series of contracts.
We present and analyze a meta-algorithm that iteratively optimize the policies of the principal and agent.
We then scale our algorithm with deep Q-learning and analyze its convergence in the presence of approximation error.
arXiv Detail & Related papers (2024-07-25T14:28:58Z) - Efficient Adaptation in Mixed-Motive Environments via Hierarchical Opponent Modeling and Planning [51.52387511006586]
We propose Hierarchical Opponent modeling and Planning (HOP), a novel multi-agent decision-making algorithm.
HOP is hierarchically composed of two modules: an opponent modeling module that infers others' goals and learns corresponding goal-conditioned policies.
HOP exhibits superior few-shot adaptation capabilities when interacting with various unseen agents, and excels in self-play scenarios.
arXiv Detail & Related papers (2024-06-12T08:48:06Z) - ProAgent: Building Proactive Cooperative Agents with Large Language
Models [89.53040828210945]
ProAgent is a novel framework that harnesses large language models to create proactive agents.
ProAgent can analyze the present state, and infer the intentions of teammates from observations.
ProAgent exhibits a high degree of modularity and interpretability, making it easily integrated into various coordination scenarios.
arXiv Detail & Related papers (2023-08-22T10:36:56Z) - On the Complexity of Multi-Agent Decision Making: From Learning in Games
to Partial Monitoring [105.13668993076801]
A central problem in the theory of multi-agent reinforcement learning (MARL) is to understand what structural conditions and algorithmic principles lead to sample-efficient learning guarantees.
We study this question in a general framework for interactive decision making with multiple agents.
We show that characterizing the statistical complexity for multi-agent decision making is equivalent to characterizing the statistical complexity of single-agent decision making.
arXiv Detail & Related papers (2023-05-01T06:46:22Z) - Uncoupled Learning of Differential Stackelberg Equilibria with Commitments [43.098826226730246]
We present uncoupled'' learning dynamics based on zeroth-order gradient estimators.
We prove that they converge to differential Stackelberg equilibria under the same conditions as previous coupled methods.
We also present an online mechanism by which symmetric learners can negotiate leader-follower roles.
arXiv Detail & Related papers (2023-02-07T12:46:54Z) - Faster Last-iterate Convergence of Policy Optimization in Zero-Sum
Markov Games [63.60117916422867]
This paper focuses on the most basic setting of competitive multi-agent RL, namely two-player zero-sum Markov games.
We propose a single-loop policy optimization method with symmetric updates from both agents, where the policy is updated via the entropy-regularized optimistic multiplicative weights update (OMWU) method.
Our convergence results improve upon the best known complexities, and lead to a better understanding of policy optimization in competitive Markov games.
arXiv Detail & Related papers (2022-10-03T16:05:43Z) - Pareto Actor-Critic for Equilibrium Selection in Multi-Agent
Reinforcement Learning [18.20664209675016]
This work focuses on equilibrium selection in no-conflict multi-agent games.
Pareto Actor-Critic (Pareto-AC) is an actor-critic algorithm that maximises the returns of all agents.
arXiv Detail & Related papers (2022-09-28T18:14:34Z) - Efficient Model-based Multi-agent Reinforcement Learning via Optimistic
Equilibrium Computation [93.52573037053449]
H-MARL (Hallucinated Multi-Agent Reinforcement Learning) learns successful equilibrium policies after a few interactions with the environment.
We demonstrate our approach experimentally on an autonomous driving simulation benchmark.
arXiv Detail & Related papers (2022-03-14T17:24:03Z) - Model-based Multi-agent Policy Optimization with Adaptive Opponent-wise
Rollouts [52.844741540236285]
This paper investigates the model-based methods in multi-agent reinforcement learning (MARL)
We propose a novel decentralized model-based MARL method, named Adaptive Opponent-wise Rollout Policy (AORPO)
arXiv Detail & Related papers (2021-05-07T16:20:22Z) - Calibration of Shared Equilibria in General Sum Partially Observable
Markov Games [15.572157454411533]
We consider a general sum partially observable Markov game where agents of different types share a single policy network.
This paper aims at i) formally understanding equilibria reached by such agents, and ii) matching emergent phenomena of such equilibria to real-world targets.
arXiv Detail & Related papers (2020-06-23T15:14:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.