ReConcile: Round-Table Conference Improves Reasoning via Consensus among Diverse LLMs
- URL: http://arxiv.org/abs/2309.13007v3
- Date: Fri, 21 Jun 2024 19:34:27 GMT
- Title: ReConcile: Round-Table Conference Improves Reasoning via Consensus among Diverse LLMs
- Authors: Justin Chih-Yao Chen, Swarnadeep Saha, Mohit Bansal,
- Abstract summary: Large Language Models (LLMs) still struggle with natural language reasoning tasks.
Motivated by the society of minds, we propose ReConcile.
A multi-model multi-agent framework designed as a round table conference among diverse LLM agents.
- Score: 61.07130026622437
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) still struggle with natural language reasoning tasks. Motivated by the society of minds (Minsky, 1988), we propose ReConcile, a multi-model multi-agent framework designed as a round table conference among diverse LLM agents. ReConcile enhances collaborative reasoning between LLM agents via multiple rounds of discussion, learning to convince other agents to improve their answers, and employing a confidence-weighted voting mechanism that leads to a better consensus. In each round, ReConcile initiates discussion between agents via a 'discussion prompt' that consists of (a) grouped answers and explanations generated by each agent in the previous round, (b) their confidence scores, and (c) demonstrations of answer-rectifying human explanations, used for convincing other agents. Experiments on seven benchmarks demonstrate that ReConcile significantly improves LLMs' reasoning -- both individually and as a team -- surpassing prior single-agent and multi-agent baselines by up to 11.4% and even outperforming GPT-4 on three datasets. ReConcile also flexibly incorporates different combinations of agents, including API-based, open-source, and domain-specific models, leading to an 8% improvement on MATH. Finally, we analyze the individual components of ReConcile, demonstrating that the diversity originating from different models is critical to its superior performance. Code: https://github.com/dinobby/ReConcile
Related papers
- Multi-Agent Reinforcement Learning with Focal Diversity Optimization [7.498844064516196]
We introduce a focal diversity-optimized multi-agent reinforcement learning approach, coined as MARL-Focal.
Our model achieves performance improvement of 5.51% compared to the best individual LLM-agent.
arXiv Detail & Related papers (2025-02-06T20:44:26Z) - Chain-of-Reasoning: Towards Unified Mathematical Reasoning in Large Language Models via a Multi-Paradigm Perspective [90.86370957353911]
Chain-of-Reasoning (CoR) is a novel unified framework that integrates multiple reasoning paradigms.
CoR generates multiple potential answers using different reasoning paradigms and synthesizes them into a coherent final solution.
Experimental results demonstrate that CoR-Math-7B significantly outperforms current SOTA models.
arXiv Detail & Related papers (2025-01-19T16:53:26Z) - MALT: Improving Reasoning with Multi-Agent LLM Training [64.13803241218886]
We present a first step toward "Multi-agent LLM training" (MALT) on reasoning problems.
Our approach employs a sequential multi-agent setup with heterogeneous LLMs assigned specialized roles.
We evaluate our approach across MATH, GSM8k, and CQA, where MALT on Llama 3.1 8B models achieves relative improvements of 14.14%, 7.12%, and 9.40% respectively.
arXiv Detail & Related papers (2024-12-02T19:30:36Z) - Diversity of Thought Elicits Stronger Reasoning Capabilities in Multi-Agent Debate Frameworks [0.0]
Chain-of-thought prompting, self-verification, and multi-agent debate are proposed to improve the reasoning and factual accuracy of large language models.
We find that multi-agent debate helps at any model scale, and that diversity of thought elicits stronger reasoning in debating LLMs.
arXiv Detail & Related papers (2024-10-10T21:59:01Z) - Hypothetical Minds: Scaffolding Theory of Mind for Multi-Agent Tasks with Large Language Models [4.9108308035618515]
Multi-agent reinforcement learning (MARL) methods struggle with the non-stationarity of multi-agent systems.
Here, we leverage large language models (LLMs) to create an autonomous agent that can handle these challenges.
Our agent, Hypothetical Minds, consists of a cognitively-inspired architecture, featuring modular components for perception, memory, and hierarchical planning over two levels of abstraction.
arXiv Detail & Related papers (2024-07-09T17:57:15Z) - Concept Matching with Agent for Out-of-Distribution Detection [19.407364109506904]
We propose a new method that integrates the agent paradigm into out-of-distribution (OOD) detection task.
Our proposed method, Concept Matching with Agent (CMA), employs neutral prompts as agents to augment the CLIP-based OOD detection process.
Our extensive experimental results showcase the superior performance of CMA over both zero-shot and training-required methods.
arXiv Detail & Related papers (2024-05-27T02:27:28Z) - Rethinking the Bounds of LLM Reasoning: Are Multi-Agent Discussions the
Key? [84.36332588191623]
We propose a novel group discussion framework to enrich the set of discussion mechanisms.
We observe that the multi-agent discussion performs better than a single agent only when there is no demonstration in the prompt.
arXiv Detail & Related papers (2024-02-28T12:04:05Z) - Large Multimodal Agents: A Survey [78.81459893884737]
Large language models (LLMs) have achieved superior performance in powering text-based AI agents.
There is an emerging research trend focused on extending these LLM-powered AI agents into the multimodal domain.
This review aims to provide valuable insights and guidelines for future research in this rapidly evolving field.
arXiv Detail & Related papers (2024-02-23T06:04:23Z) - AgentCF: Collaborative Learning with Autonomous Language Agents for
Recommender Systems [112.76941157194544]
We propose AgentCF for simulating user-item interactions in recommender systems through agent-based collaborative filtering.
We creatively consider not only users but also items as agents, and develop a collaborative learning approach that optimize both kinds of agents together.
Overall, the optimized agents exhibit diverse interaction behaviors within our framework, including user-item, user-user, item-item, and collective interactions.
arXiv Detail & Related papers (2023-10-13T16:37:14Z) - BGC: Multi-Agent Group Belief with Graph Clustering [1.9949730506194252]
We propose a semi-communication method to enable agents can exchange information without communication.
Inspired by the neighborhood cognitive consistency, we propose a group-based module to divide adjacent agents into a small group and minimize in-group agents' beliefs.
Results reveal that the proposed method achieves a significant improvement in the SMAC benchmark.
arXiv Detail & Related papers (2020-08-20T07:07:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.