How Good LLM-Generated Password Policies Are?
- URL: http://arxiv.org/abs/2506.08320v2
- Date: Wed, 02 Jul 2025 23:34:36 GMT
- Title: How Good LLM-Generated Password Policies Are?
- Authors: Vivek Vaidya, Aditya Patwardhan, Ashish Kundu,
- Abstract summary: We study the application of Large Language Models within the context of Cybersecurity Access Control Systems.<n>Specifically, we investigate the consistency and accuracy of LLM-generated password policies, translating natural language prompts into executable pwquality.conf configuration files.<n>Our findings underscore significant challenges in the current generation of LLMs and contribute valuable insights into refining the deployment of LLMs in Access Control Systems.
- Score: 0.1747820331822631
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative AI technologies, particularly Large Language Models (LLMs), are rapidly being adopted across industry, academia, and government sectors, owing to their remarkable capabilities in natural language processing. However, despite their strengths, the inconsistency and unpredictability of LLM outputs present substantial challenges, especially in security-critical domains such as access control. One critical issue that emerges prominently is the consistency of LLM-generated responses, which is paramount for ensuring secure and reliable operations. In this paper, we study the application of LLMs within the context of Cybersecurity Access Control Systems. Specifically, we investigate the consistency and accuracy of LLM-generated password policies, translating natural language prompts into executable pwquality.conf configuration files. Our experimental methodology adopts two distinct approaches: firstly, we utilize pre-trained LLMs to generate configuration files purely from natural language prompts without additional guidance. Secondly, we provide these models with official pwquality.conf documentation to serve as an informative baseline. We systematically assess the soundness, accuracy, and consistency of these AI-generated configurations. Our findings underscore significant challenges in the current generation of LLMs and contribute valuable insights into refining the deployment of LLMs in Access Control Systems.
Related papers
- LLM4VV: Evaluating Cutting-Edge LLMs for Generation and Evaluation of Directive-Based Parallel Programming Model Compiler Tests [7.6818904666624395]
This paper proposes a dual-LLM system and experiments with the usage of LLMs for the generation of compiler tests.<n>It is evident that LLMs possess the promising potential to generate quality compiler tests and verify them automatically.
arXiv Detail & Related papers (2025-07-29T02:34:28Z) - Textual Bayes: Quantifying Uncertainty in LLM-Based Systems [16.449972045324916]
Large language models (LLMs) are increasingly capable of solving challenging real-world tasks.<n> accurately quantifying their uncertainty remains a critical open problem.<n>This challenge is compounded by the closed-source, black-box nature of many state-of-the-art LLMs.
arXiv Detail & Related papers (2025-06-11T18:00:00Z) - Self-Correction Makes LLMs Better Parsers [19.20952673157709]
Large language models (LLMs) have achieved remarkable success across various natural language processing (NLP) tasks.<n>Recent studies suggest that they still face challenges in performing fundamental NLP tasks essential for deep language understanding.<n>We propose a self-correction method that leverages grammar rules from existing treebanks to guide LLMs in correcting previous errors.
arXiv Detail & Related papers (2025-04-19T03:50:59Z) - RuAG: Learned-rule-augmented Generation for Large Language Models [62.64389390179651]
We propose a novel framework, RuAG, to automatically distill large volumes of offline data into interpretable first-order logic rules.
We evaluate our framework on public and private industrial tasks, including natural language processing, time-series, decision-making, and industrial tasks.
arXiv Detail & Related papers (2024-11-04T00:01:34Z) - Beyond Binary: Towards Fine-Grained LLM-Generated Text Detection via Role Recognition and Involvement Measurement [51.601916604301685]
Large language models (LLMs) generate content that can undermine trust in online discourse.<n>Current methods often focus on binary classification, failing to address the complexities of real-world scenarios like human-LLM collaboration.<n>To move beyond binary classification and address these challenges, we propose a new paradigm for detecting LLM-generated content.
arXiv Detail & Related papers (2024-10-18T08:14:10Z) - System-Level Defense against Indirect Prompt Injection Attacks: An Information Flow Control Perspective [24.583984374370342]
Large Language Model-based systems (LLM systems) are information and query processing systems.
We present a system-level defense based on the principles of information flow control that we call an f-secure LLM system.
arXiv Detail & Related papers (2024-09-27T18:41:58Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
Large language models (LLMs) are trained on a combination of natural language and formal language (code)
Code translates high-level goals into executable steps, featuring standard syntax, logical consistency, abstraction, and modularity.
arXiv Detail & Related papers (2024-01-01T16:51:20Z) - Assessing the Reliability of Large Language Model Knowledge [78.38870272050106]
Large language models (LLMs) have been treated as knowledge bases due to their strong performance in knowledge probing tasks.
How do we evaluate the capabilities of LLMs to consistently produce factually correct answers?
We propose MOdel kNowledge relIabiliTy scORe (MONITOR), a novel metric designed to directly measure LLMs' factual reliability.
arXiv Detail & Related papers (2023-10-15T12:40:30Z) - Survey on Factuality in Large Language Models: Knowledge, Retrieval and
Domain-Specificity [61.54815512469125]
This survey addresses the crucial issue of factuality in Large Language Models (LLMs)
As LLMs find applications across diverse domains, the reliability and accuracy of their outputs become vital.
arXiv Detail & Related papers (2023-10-11T14:18:03Z) - Red Teaming Language Model Detectors with Language Models [114.36392560711022]
Large language models (LLMs) present significant safety and ethical risks if exploited by malicious users.
Recent works have proposed algorithms to detect LLM-generated text and protect LLMs.
We study two types of attack strategies: 1) replacing certain words in an LLM's output with their synonyms given the context; 2) automatically searching for an instructional prompt to alter the writing style of the generation.
arXiv Detail & Related papers (2023-05-31T10:08:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.