Network Threat Detection: Addressing Class Imbalanced Data with Deep Forest
- URL: http://arxiv.org/abs/2506.08383v1
- Date: Tue, 10 Jun 2025 02:49:07 GMT
- Title: Network Threat Detection: Addressing Class Imbalanced Data with Deep Forest
- Authors: Jiaqi Chen, Rongbin Ye,
- Abstract summary: This research addresses the detection challenges by presenting a comprehensive empirical analysis of machine learning techniques for malware detection.<n>We implement and compare a few machine learning techniques.<n>Our findings demonstrate that the combination of appropriate imbalance treatment techniques with ensemble methods, particularly gcForest, achieves better detection performance compared to traditional approaches.
- Score: 10.58880648358346
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the rapid expansion of Internet of Things (IoT) networks, detecting malicious traffic in real-time has become a critical cybersecurity challenge. This research addresses the detection challenges by presenting a comprehensive empirical analysis of machine learning techniques for malware detection using the IoT-23 dataset provided by the Stratosphere Laboratory. We address the significant class imbalance within the dataset through three resampling strategies. We implement and compare a few machine learning techniques. Our findings demonstrate that the combination of appropriate imbalance treatment techniques with ensemble methods, particularly gcForest, achieves better detection performance compared to traditional approaches. This work contributes significantly to the development of more intelligent and efficient automated threat detection systems for IoT environments, helping to secure critical infrastructure against sophisticated cyber attacks while optimizing computational resource usage.
Related papers
- Expert-in-the-Loop Systems with Cross-Domain and In-Domain Few-Shot Learning for Software Vulnerability Detection [38.083049237330826]
This study explores the use of Large Language Models (LLMs) in software vulnerability assessment by simulating the identification of Python code with known Common Weaknessions (CWEs)<n>Our results indicate that while zero-shot prompting performs poorly, few-shot prompting significantly enhances classification performance.<n> challenges such as model reliability, interpretability, and adversarial robustness remain critical areas for future research.
arXiv Detail & Related papers (2025-06-11T18:43:51Z) - Intrusion Detection in IoT Networks Using Hyperdimensional Computing: A Case Study on the NSL-KDD Dataset [0.2399911126932527]
The rapid expansion of Internet of Things (IoT) networks has introduced new security challenges.<n>In this study, a detection framework based on hyperdimensional computing (HDC) is proposed to identify and classify network intrusions.<n>The proposed approach effectively distinguishes various attack categories such as DoS, probe, R2L, and U2R, while accurately identifying normal traffic patterns.
arXiv Detail & Related papers (2025-03-04T22:33:37Z) - Enhanced Anomaly Detection in Industrial Control Systems aided by Machine Learning [2.2457306746668766]
This study investigates whether combining both network and process data can improve attack detection in ICSs environments.
Our findings suggest that integrating network traffic with operational process data can enhance detection capabilities.
Although the results are promising, they are preliminary and highlight the need for further studies.
arXiv Detail & Related papers (2024-10-25T17:41:33Z) - Preliminary study on artificial intelligence methods for cybersecurity threat detection in computer networks based on raw data packets [34.82692226532414]
In this paper, we investigate deep learning methodologies capable of detecting attacks in real-time directly from raw packet data within network traffic.
We propose a novel approach where packets are stacked into windows and separately recognised, with a 2D image representation suitable for processing with computer vision models.
arXiv Detail & Related papers (2024-07-24T15:04:00Z) - Adversarial Attacks and Defenses in Fault Detection and Diagnosis: A Comprehensive Benchmark on the Tennessee Eastman Process [39.677420930301736]
Integrating machine learning into Automated Control Systems (ACS) enhances decision-making in industrial process management.
One of the limitations to the widespread adoption of these technologies is the vulnerability of neural networks to adversarial attacks.
This study explores the threats in deploying deep learning models for fault diagnosis in ACS using the Tennessee Eastman Process dataset.
arXiv Detail & Related papers (2024-03-20T10:59:06Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - Few-shot Weakly-supervised Cybersecurity Anomaly Detection [1.179179628317559]
We propose an enhancement to an existing few-shot weakly-supervised deep learning anomaly detection framework.
This framework incorporates data augmentation, representation learning and ordinal regression.
We then evaluated and showed the performance of our implemented framework on three benchmark datasets.
arXiv Detail & Related papers (2023-04-15T04:37:54Z) - A Hybrid Deep Learning Anomaly Detection Framework for Intrusion
Detection [4.718295605140562]
We propose a three-stage deep learning anomaly detection based network intrusion attack detection framework.
The framework comprises an integration of unsupervised (K-means clustering), semi-supervised (GANomaly) and supervised learning (CNN) algorithms.
We then evaluated and showed the performance of our implemented framework on three benchmark datasets.
arXiv Detail & Related papers (2022-12-02T04:40:54Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
We investigate the vulnerability of flavor tagging algorithms via application of adversarial attacks.
We present an adversarial training strategy that mitigates the impact of such simulated attacks.
arXiv Detail & Related papers (2022-03-25T19:57:19Z) - A Comparative Analysis of Machine Learning Techniques for IoT Intrusion
Detection [0.0]
This paper presents a comparative analysis of supervised, unsupervised and reinforcement learning techniques on nine malware captures of the IoT-23 dataset.
The developed models consisted of Support Vector Machine (SVM), Extreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LightGBM), Isolation Forest (iForest), Local Outlier Factor (LOF) and a Deep Reinforcement Learning (DRL) model based on a Double Deep Q-Network (DDQN)
arXiv Detail & Related papers (2021-11-25T16:14:54Z) - Robust Self-Ensembling Network for Hyperspectral Image Classification [38.84831094095329]
We propose a robust self-ensembling network (RSEN) to address this problem.
The proposed RSEN consists of twoworks including a base network and an ensemble network.
We show that the proposed algorithm can yield competitive performance compared with the state-of-the-art methods.
arXiv Detail & Related papers (2021-04-08T13:33:14Z) - Towards AIOps in Edge Computing Environments [60.27785717687999]
This paper describes the system design of an AIOps platform which is applicable in heterogeneous, distributed environments.
It is feasible to collect metrics with a high frequency and simultaneously run specific anomaly detection algorithms directly on edge devices.
arXiv Detail & Related papers (2021-02-12T09:33:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.