Reinforcement Learning Teachers of Test Time Scaling
- URL: http://arxiv.org/abs/2506.08388v2
- Date: Sun, 22 Jun 2025 10:04:49 GMT
- Title: Reinforcement Learning Teachers of Test Time Scaling
- Authors: Edoardo Cetin, Tianyu Zhao, Yujin Tang,
- Abstract summary: Key use case of reasoning LMs is to act as teachers for distilling new students and cold-starting future RL iterations.<n>We introduce a new framework that avoids RL's exploration challenge by training a new class of Reinforcement-Learned Teachers (RLTs)<n>RLTs are prompted with both the question and solution to each problem, and tasked to simply "connect-the-dots" with detailed explanations tailored for their students.
- Score: 20.251827725749607
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Training reasoning language models (LMs) with reinforcement learning (RL) for one-hot correctness inherently relies on the LM being able to explore and solve its task with some chance at initialization. Furthermore, a key use case of reasoning LMs is to act as teachers for distilling new students and cold-starting future RL iterations rather than being deployed themselves. From these considerations, we introduce a new framework that avoids RL's exploration challenge by training a new class of Reinforcement-Learned Teachers (RLTs) focused on yielding the most effective downstream distillation. RLTs are prompted with both the question and solution to each problem, and tasked to simply "connect-the-dots" with detailed explanations tailored for their students. We train RLTs with dense rewards obtained by feeding each explanation to the student and testing its understanding of the problem's solution. In practice, the raw outputs of a 7B RLT provide higher final performance on competition and graduate-level tasks than existing distillation and cold-starting pipelines that collect and postprocess the reasoning traces of orders of magnitude larger LMs. Furthermore, RLTs maintain their effectiveness when training larger students and when applied zero-shot to out-of-distribution tasks, unlocking new levels of efficiency and re-usability for the RL reasoning framework.
Related papers
- RL for Reasoning by Adaptively Revealing Rationales [36.50924054394857]
Supervised fine-tuning (SFT) relies on dense ground-truth labels, which become increasingly costly as sequence length grows.<n>We address this by adaptive backtracking (AdaBack), a per-sample curriculum learning algorithm that reveals only a partial prefix of the target output during training.<n>We show that our adaptive curriculum over partial answers reliably solves problems that are otherwise intractable.
arXiv Detail & Related papers (2025-06-22T17:46:14Z) - Learning What Reinforcement Learning Can't: Interleaved Online Fine-Tuning for Hardest Questions [28.962415274754537]
Large language model (LLM) reasoning has shown that sophisticated behaviors such as planning and self-reflection can emerge through reinforcement learning (RL)<n>We introduce a novel training approach, textbfReLIFT (textbfReinforcement textbfL textbfInterleaved with Online textbfFine-textbfTuning)<n>In ReLIFT, the model is primarily trained using RL, but when it encounters challenging questions, high-quality solutions are collected for fine-tuning, and the training process alternate
arXiv Detail & Related papers (2025-06-09T08:11:20Z) - Curriculum Reinforcement Learning from Easy to Hard Tasks Improves LLM Reasoning [52.32193550674408]
We aim to improve the reasoning capabilities of language models via reinforcement learning (RL)<n>We propose to schedule tasks from easy to hard (E2H), allowing LLMs to build reasoning skills gradually.<n>E2H Reasoner significantly improves the reasoning ability of small LLMs (1.5B to 3B)
arXiv Detail & Related papers (2025-06-07T02:41:54Z) - Decomposing Elements of Problem Solving: What "Math" Does RL Teach? [22.517954679764244]
We decompose problem solving into fundamental capabilities: Plan, Execute, and Verify.<n>We show that RL-trained models struggle with fundamentally new problems, hitting a 'coverage wall' due to insufficient planning skills.<n>Our findings provide insights into the role of RL in enhancing LLM reasoning, expose key limitations, and suggest a path toward overcoming these barriers.
arXiv Detail & Related papers (2025-05-28T18:18:49Z) - Enhancing Efficiency and Exploration in Reinforcement Learning for LLMs [12.087316618902433]
Reasoning large language models (LLMs) excel in complex tasks.<n>Existing approaches allocate an equal number of rollouts to all questions during reinforcement learning (RL)<n>We propose a mechanism for dynamically allocating rollout budgets based on the difficulty of the problems.
arXiv Detail & Related papers (2025-05-24T07:28:29Z) - AceReason-Nemotron: Advancing Math and Code Reasoning through Reinforcement Learning [50.02117478165099]
We show that large-scale reinforcement learning can significantly enhance the reasoning capabilities of strong, small- and mid-sized models.<n>We propose a simple yet effective approach: first training on math-only prompts, then on code-only prompts.
arXiv Detail & Related papers (2025-05-22T08:50:47Z) - Distilling the Implicit Multi-Branch Structure in LLMs' Reasoning via Reinforcement Learning [63.888013006686364]
Distilling reasoning paths from teacher to student models via supervised fine-tuning (SFT) provides a shortcut for improving the reasoning ability of Large Language Models (LLMs)<n>We propose RLKD, a reinforcement learning-based distillation framework guided by a novel Generative Structure Reward Model (GSRM)<n>Our GSRM converts reasoning paths into multiple meta-reasoning-solving steps and computes rewards to measure structural alignment between student and teacher reasoning.
arXiv Detail & Related papers (2025-05-22T02:36:36Z) - R1-Searcher: Incentivizing the Search Capability in LLMs via Reinforcement Learning [87.30285670315334]
textbfR1-Searcher is a novel two-stage outcome-based RL approach designed to enhance the search capabilities of Large Language Models.<n>Our framework relies exclusively on RL, without requiring process rewards or distillation for a cold start.<n>Our experiments demonstrate that our method significantly outperforms previous strong RAG methods, even when compared to the closed-source GPT-4o-mini.
arXiv Detail & Related papers (2025-03-07T17:14:44Z) - Improving Large Language Models via Fine-grained Reinforcement Learning with Minimum Editing Constraint [104.53687944498155]
Reinforcement learning (RL) has been widely used in training large language models (LLMs)
We propose a new RL method named RLMEC that incorporates a generative model as the reward model.
Based on the generative reward model, we design the token-level RL objective for training and an imitation-based regularization for stabilizing RL process.
arXiv Detail & Related papers (2024-01-11T17:58:41Z) - LaGR-SEQ: Language-Guided Reinforcement Learning with Sample-Efficient
Querying [71.86163159193327]
Large language models (LLMs) have recently demonstrated their impressive ability to provide context-aware responses via text.
This ability could potentially be used to predict plausible solutions in sequential decision making tasks pertaining to pattern completion.
We introduce LaGR, which uses this predictive ability of LLMs to propose solutions to tasks that have been partially completed by a primary reinforcement learning (RL) agent.
arXiv Detail & Related papers (2023-08-21T02:07:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.