Improved Scaling Laws in Linear Regression via Data Reuse
- URL: http://arxiv.org/abs/2506.08415v1
- Date: Tue, 10 Jun 2025 03:39:29 GMT
- Title: Improved Scaling Laws in Linear Regression via Data Reuse
- Authors: Licong Lin, Jingfeng Wu, Peter L. Bartlett,
- Abstract summary: We show that data reuse can improve existing scaling laws in linear regression.<n>This suggests an improved scaling law via data reuse (i.e., choosing $L>N$) in data-constrained regimes.
- Score: 30.68341507745991
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural scaling laws suggest that the test error of large language models trained online decreases polynomially as the model size and data size increase. However, such scaling can be unsustainable when running out of new data. In this work, we show that data reuse can improve existing scaling laws in linear regression. Specifically, we derive sharp test error bounds on $M$-dimensional linear models trained by multi-pass stochastic gradient descent (multi-pass SGD) on $N$ data with sketched features. Assuming that the data covariance has a power-law spectrum of degree $a$, and that the true parameter follows a prior with an aligned power-law spectrum of degree $b-a$ (with $a > b > 1$), we show that multi-pass SGD achieves a test error of $\Theta(M^{1-b} + L^{(1-b)/a})$, where $L \lesssim N^{a/b}$ is the number of iterations. In the same setting, one-pass SGD only attains a test error of $\Theta(M^{1-b} + N^{(1-b)/a})$ (see e.g., Lin et al., 2024). This suggests an improved scaling law via data reuse (i.e., choosing $L>N$) in data-constrained regimes. Numerical simulations are also provided to verify our theoretical findings.
Related papers
- Linear regression with overparameterized linear neural networks: Tight upper and lower bounds for implicit $\ell^1$-regularization [3.902441198412341]
We study implicit regularization in diagonal linear neural networks of depth $Dge 2$ for overparameterized linear regression problems.<n>Our results reveal a qualitative difference between depths: for $D ge 3$, the error decreases linearly with $alpha$, whereas for $D=2$, it decreases at rate $alpha1-varrho$.<n> Numerical experiments corroborate our theoretical findings and suggest that deeper networks, i.e., $D ge 3$, may lead to better generalization.
arXiv Detail & Related papers (2025-06-01T19:55:31Z) - Nearly Optimal Differentially Private ReLU Regression [18.599299269974498]
We investigate one of the most fundamental non learning problems, ReLU regression, in the Differential Privacy (DP) model.<n>We relax the requirement of $epsilon$ and public data by proposing and analyzing a one-pass mini-batch Generalized Model Perceptron algorithm.
arXiv Detail & Related papers (2025-03-08T02:09:47Z) - Scaling Laws in Linear Regression: Compute, Parameters, and Data [86.48154162485712]
We study the theory of scaling laws in an infinite dimensional linear regression setup.<n>We show that the reducible part of the test error is $Theta(-(a-1) + N-(a-1)/a)$.<n>Our theory is consistent with the empirical neural scaling laws and verified by numerical simulation.
arXiv Detail & Related papers (2024-06-12T17:53:29Z) - Neural network learns low-dimensional polynomials with SGD near the information-theoretic limit [75.4661041626338]
We study the problem of gradient descent learning of a single-index target function $f_*(boldsymbolx) = textstylesigma_*left(langleboldsymbolx,boldsymbolthetarangleright)$<n>We prove that a two-layer neural network optimized by an SGD-based algorithm learns $f_*$ with a complexity that is not governed by information exponents.
arXiv Detail & Related papers (2024-06-03T17:56:58Z) - Turnstile $\ell_p$ leverage score sampling with applications [56.403488578703865]
We develop a novel algorithm for sampling rows $a_i$ of a matrix $AinmathbbRntimes d$, proportional to their $ell_p$ norm, when $A$ is presented in a turnstile data stream.
Our algorithm not only returns the set of sampled row indexes, it also returns slightly perturbed rows $tildea_i approx a_i$, and approximates their sampling probabilities up to $varepsilon$ relative error.
For logistic regression, our framework yields the first algorithm that achieves a $
arXiv Detail & Related papers (2024-06-01T07:33:41Z) - Scaling Up Differentially Private LASSO Regularized Logistic Regression
via Faster Frank-Wolfe Iterations [51.14495595270775]
We adapt the Frank-Wolfe algorithm for $L_1$ penalized linear regression to be aware of sparse inputs and to use them effectively.
Our results demonstrate that this procedure can reduce runtime by a factor of up to $2,200times$, depending on the value of the privacy parameter $epsilon$ and the sparsity of the dataset.
arXiv Detail & Related papers (2023-10-30T19:52:43Z) - $p$-Generalized Probit Regression and Scalable Maximum Likelihood
Estimation via Sketching and Coresets [74.37849422071206]
We study the $p$-generalized probit regression model, which is a generalized linear model for binary responses.
We show how the maximum likelihood estimator for $p$-generalized probit regression can be approximated efficiently up to a factor of $(1+varepsilon)$ on large data.
arXiv Detail & Related papers (2022-03-25T10:54:41Z) - Piecewise Linear Regression via a Difference of Convex Functions [50.89452535187813]
We present a new piecewise linear regression methodology that utilizes fitting a difference of convex functions (DC functions) to the data.
We empirically validate the method, showing it to be practically implementable, and to have comparable performance to existing regression/classification methods on real-world datasets.
arXiv Detail & Related papers (2020-07-05T18:58:47Z) - Online Robust Regression via SGD on the l1 loss [19.087335681007477]
We consider the robust linear regression problem in the online setting where we have access to the data in a streaming manner.
We show in this work that the descent on the $ell_O( 1 / (1 - eta)2 n )$ loss converges to the true parameter vector at a $tildeO( 1 / (1 - eta)2 n )$ rate which is independent of the values of the contaminated measurements.
arXiv Detail & Related papers (2020-07-01T11:38:21Z) - A Neural Scaling Law from the Dimension of the Data Manifold [8.656787568717252]
When data is plentiful, the loss achieved by well-trained neural networks scales as a power-law $L propto N-alpha$ in the number of network parameters $N$.
The scaling law can be explained if neural models are effectively just performing regression on a data manifold of intrinsic dimension $d$.
This simple theory predicts that the scaling exponents $alpha approx 4/d$ for cross-entropy and mean-squared error losses.
arXiv Detail & Related papers (2020-04-22T19:16:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.