論文の概要: Diffusion Models for Safety Validation of Autonomous Driving Systems
- arxiv url: http://arxiv.org/abs/2506.08459v1
- Date: Tue, 10 Jun 2025 05:31:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-11 15:11:41.562064
- Title: Diffusion Models for Safety Validation of Autonomous Driving Systems
- Title(参考訳): 自律運転システムの安全性検証のための拡散モデル
- Authors: Juanran Wang, Marc R. Schlichting, Harrison Delecki, Mykel J. Kochenderfer,
- Abstract要約: 我々は、初期交通状況が考慮された自動運転車の潜在的な故障事例を生成するために、デノナイズ拡散モデルを訓練する。
我々のモデルは、外部トレーニングデータセットを一切必要とせず、控えめなコンピューティングリソースでトレーニングや推論を行うことができ、テスト中のシステムの事前の知識を前提としない。
- 参考スコア(独自算出の注目度): 33.774939728834156
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Safety validation of autonomous driving systems is extremely challenging due to the high risks and costs of real-world testing as well as the rarity and diversity of potential failures. To address these challenges, we train a denoising diffusion model to generate potential failure cases of an autonomous vehicle given any initial traffic state. Experiments on a four-way intersection problem show that in a variety of scenarios, the diffusion model can generate realistic failure samples while capturing a wide variety of potential failures. Our model does not require any external training dataset, can perform training and inference with modest computing resources, and does not assume any prior knowledge of the system under test, with applicability to safety validation for traffic intersections.
- Abstract(参考訳): 自律運転システムの安全性検証は、現実のテストのリスクとコストが高いこと、および潜在的な障害の希少性と多様性のため、極めて難しい。
これらの課題に対処するために、初期交通状況が考慮された自動運転車の潜在的な故障事例を生成するために、デノナイズ拡散モデルを訓練する。
4方向交叉問題の実験では、拡散モデルが様々なシナリオにおいて、様々な潜在的な故障を捉えながら現実的な故障サンプルを生成できることが示されている。
我々のモデルは、外部トレーニングデータセットを一切必要とせず、控えめなコンピューティングリソースでトレーニングや推論を行うことができ、テスト中のシステムの事前知識を前提とせず、交通交差点の安全性検証にも適用可能である。
関連論文リスト
- A Survey of World Models for Autonomous Driving [63.33363128964687]
自律運転の最近の進歩は、堅牢な世界モデリングの進歩によって推進されている。
本稿では、自律運転の世界モデルにおける最近の進歩を体系的にレビューする。
論文 参考訳(メタデータ) (2025-01-20T04:00:02Z) - AdvDiffuser: Generating Adversarial Safety-Critical Driving Scenarios via Guided Diffusion [6.909801263560482]
AdvDiffuserは、ガイド付き拡散を通じて安全クリティカルな運転シナリオを生成するための敵対的なフレームワークである。
本稿では,AdvDiffuserが最小限のウォームアップエピソードデータを持つ様々なテストシステムに適用可能であることを示す。
論文 参考訳(メタデータ) (2024-10-11T02:03:21Z) - Hard Cases Detection in Motion Prediction by Vision-Language Foundation Models [16.452638202694246]
本研究は、自動運転におけるハードケースの検出におけるビジョン・ランゲージ・ファンデーション・モデル(VLM)の可能性を探るものである。
設計したプロンプトで逐次画像フレームを供給し,課題のあるエージェントやシナリオを効果的に識別する,実現可能なパイプラインを提案する。
NuScenesデータセット上で、パイプラインを最先端の手法に組み込むことの有効性と可能性を示す。
論文 参考訳(メタデータ) (2024-05-31T16:35:41Z) - Adaptive Failure Search Using Critical States from Domain Experts [9.93890332477992]
フェールサーチは、シミュレーションまたは実世界のテストにおいて、かなりの走行距離をロギングすることで行うことができる。
ASTはマルコフ決定プロセスとして失敗探索の問題を提起する手法である。
ASTフレームワークにクリティカルステートを組み込むことで,安全性違反の増大を伴う障害シナリオが生成されることを示す。
論文 参考訳(メタデータ) (2023-04-01T18:14:41Z) - Unsupervised Self-Driving Attention Prediction via Uncertainty Mining
and Knowledge Embedding [51.8579160500354]
本研究では、不確実性モデリングと知識統合の駆動による自動運転の注意を予測できる教師なし手法を提案する。
結果は、完全に教師された最先端のアプローチと比較して、同等またはさらに印象的なパフォーマンスを示している。
論文 参考訳(メタデータ) (2023-03-17T00:28:33Z) - Differentiable Control Barrier Functions for Vision-based End-to-End
Autonomous Driving [100.57791628642624]
本稿では,視覚に基づくエンドツーエンド自動運転のための安全保証学習フレームワークを提案する。
我々は、勾配降下によりエンドツーエンドに訓練された微分制御バリア関数(dCBF)を備えた学習システムを設計する。
論文 参考訳(メタデータ) (2022-03-04T16:14:33Z) - Generating and Characterizing Scenarios for Safety Testing of Autonomous
Vehicles [86.9067793493874]
最先端運転シミュレータを用いて,テストシナリオを特徴付け,生成するための効率的なメカニズムを提案する。
次世代シミュレーション(NGSIM)プロジェクトにおける実運転データの特徴付けに本手法を用いる。
事故回避の複雑さに基づいてメトリクスを定義してシナリオをランク付けし、事故発生の可能性を最小限に抑えるための洞察を提供します。
論文 参考訳(メタデータ) (2021-03-12T17:00:23Z) - Towards Automated Safety Coverage and Testing for Autonomous Vehicles
with Reinforcement Learning [0.3683202928838613]
検証は、システムが日々の運転で遭遇する可能性のあるシナリオや状況において、自動運転車システムをテストに投入する。
本稿では,AVソフトウェア実装における障害事例と予期せぬ交通状況を生成するために強化学習(RL)を提案する。
論文 参考訳(メタデータ) (2020-05-22T19:00:38Z) - Scalable Autonomous Vehicle Safety Validation through Dynamic
Programming and Scene Decomposition [37.61747231296097]
本稿では、近似動的プログラミングを用いて、自律的なポリシの障害に対する分布を推定する新しい安全性検証手法を提案する。
両実験とも, ベースラインアプローチと比較して, 故障数の増加が見られた。
論文 参考訳(メタデータ) (2020-04-14T21:03:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。