Diffusion Models for Safety Validation of Autonomous Driving Systems
- URL: http://arxiv.org/abs/2506.08459v1
- Date: Tue, 10 Jun 2025 05:31:33 GMT
- Title: Diffusion Models for Safety Validation of Autonomous Driving Systems
- Authors: Juanran Wang, Marc R. Schlichting, Harrison Delecki, Mykel J. Kochenderfer,
- Abstract summary: We train a denoising diffusion model to generate potential failure cases of an autonomous vehicle given any initial traffic state.<n>Our model does not require any external training dataset, can perform training and inference with modest computing resources, and does not assume any prior knowledge of the system under test.
- Score: 33.774939728834156
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Safety validation of autonomous driving systems is extremely challenging due to the high risks and costs of real-world testing as well as the rarity and diversity of potential failures. To address these challenges, we train a denoising diffusion model to generate potential failure cases of an autonomous vehicle given any initial traffic state. Experiments on a four-way intersection problem show that in a variety of scenarios, the diffusion model can generate realistic failure samples while capturing a wide variety of potential failures. Our model does not require any external training dataset, can perform training and inference with modest computing resources, and does not assume any prior knowledge of the system under test, with applicability to safety validation for traffic intersections.
Related papers
- Towards provable probabilistic safety for scalable embodied AI systems [79.31011047593492]
Embodied AI systems are increasingly prevalent across various applications.<n> Ensuring their safety in complex operating environments remains a major challenge.<n>This Perspective offers a pathway toward safer, large-scale adoption of embodied AI systems in safety-critical applications.
arXiv Detail & Related papers (2025-06-05T15:46:25Z) - A Survey of World Models for Autonomous Driving [63.33363128964687]
Recent breakthroughs in autonomous driving have been propelled by advances in robust world modeling.<n>This paper systematically reviews recent advances in world models for autonomous driving.
arXiv Detail & Related papers (2025-01-20T04:00:02Z) - AdvDiffuser: Generating Adversarial Safety-Critical Driving Scenarios via Guided Diffusion [6.909801263560482]
AdvDiffuser is an adversarial framework for generating safety-critical driving scenarios through guided diffusion.
We show that AdvDiffuser can be applied to various tested systems with minimal warm-up episode data.
arXiv Detail & Related papers (2024-10-11T02:03:21Z) - Hard Cases Detection in Motion Prediction by Vision-Language Foundation Models [16.452638202694246]
This work explores the potential of Vision-Language Foundation Models (VLMs) in detecting hard cases in autonomous driving.
We introduce a feasible pipeline where VLMs, fed with sequential image frames with designed prompts, effectively identify challenging agents or scenarios.
We show the effectiveness and feasibility of incorporating our pipeline with state-of-the-art methods on NuScenes datasets.
arXiv Detail & Related papers (2024-05-31T16:35:41Z) - Adaptive Failure Search Using Critical States from Domain Experts [9.93890332477992]
Failure search may be done through logging substantial vehicle miles in either simulation or real world testing.
AST is one such method that poses the problem of failure search as a Markov decision process.
We show that the incorporation of critical states into the AST framework generates failure scenarios with increased safety violations.
arXiv Detail & Related papers (2023-04-01T18:14:41Z) - Model-Based Reinforcement Learning with Isolated Imaginations [61.67183143982074]
We propose Iso-Dream++, a model-based reinforcement learning approach.
We perform policy optimization based on the decoupled latent imaginations.
This enables long-horizon visuomotor control tasks to benefit from isolating mixed dynamics sources in the wild.
arXiv Detail & Related papers (2023-03-27T02:55:56Z) - Unsupervised Self-Driving Attention Prediction via Uncertainty Mining
and Knowledge Embedding [51.8579160500354]
We propose an unsupervised way to predict self-driving attention by uncertainty modeling and driving knowledge integration.
Results show equivalent or even more impressive performance compared to fully-supervised state-of-the-art approaches.
arXiv Detail & Related papers (2023-03-17T00:28:33Z) - Differentiable Control Barrier Functions for Vision-based End-to-End
Autonomous Driving [100.57791628642624]
We introduce a safety guaranteed learning framework for vision-based end-to-end autonomous driving.
We design a learning system equipped with differentiable control barrier functions (dCBFs) that is trained end-to-end by gradient descent.
arXiv Detail & Related papers (2022-03-04T16:14:33Z) - Generating and Characterizing Scenarios for Safety Testing of Autonomous
Vehicles [86.9067793493874]
We propose efficient mechanisms to characterize and generate testing scenarios using a state-of-the-art driving simulator.
We use our method to characterize real driving data from the Next Generation Simulation (NGSIM) project.
We rank the scenarios by defining metrics based on the complexity of avoiding accidents and provide insights into how the AV could have minimized the probability of incurring an accident.
arXiv Detail & Related papers (2021-03-12T17:00:23Z) - Towards Automated Safety Coverage and Testing for Autonomous Vehicles
with Reinforcement Learning [0.3683202928838613]
Validation puts the autonomous vehicle system to the test in scenarios or situations that the system would likely encounter in everyday driving.
We propose using reinforcement learning (RL) to generate failure examples and unexpected traffic situations for the AV software implementation.
arXiv Detail & Related papers (2020-05-22T19:00:38Z) - Scalable Autonomous Vehicle Safety Validation through Dynamic
Programming and Scene Decomposition [37.61747231296097]
We present a new safety validation approach that attempts to estimate the distribution over failures of an autonomous policy using approximate dynamic programming.
In both experiments, we observed an increase in the number of failures discovered compared to baseline approaches.
arXiv Detail & Related papers (2020-04-14T21:03:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.