論文の概要: Safe and Economical UAV Trajectory Planning in Low-Altitude Airspace: A Hybrid DRL-LLM Approach with Compliance Awareness
- arxiv url: http://arxiv.org/abs/2506.08532v1
- Date: Tue, 10 Jun 2025 07:51:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-11 15:11:41.856796
- Title: Safe and Economical UAV Trajectory Planning in Low-Altitude Airspace: A Hybrid DRL-LLM Approach with Compliance Awareness
- Title(参考訳): 低高度空域における安全かつ経済的なUAV軌道計画:コンプライアンスを意識したDRL-LLMハイブリッドアプローチ
- Authors: Yanwei Gong, Xiaolin Chang,
- Abstract要約: 本稿では, 深層強化学習(DRL)と大言語モデル(LLM)の推論を組み合わせた新しいUAV軌道計画フレームワークを提案し, 安全性, 適合性, 経済的に実現可能な経路計画を実現する。
実験の結果,本手法は,データ収集率,衝突回避率,着陸成功率,規制遵守度,エネルギー効率など,複数の指標において,既存のベースラインを著しく上回ることがわかった。
- 参考スコア(独自算出の注目度): 3.9471658054053806
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid growth of the low-altitude economy has driven the widespread adoption of unmanned aerial vehicles (UAVs). This growing deployment presents new challenges for UAV trajectory planning in complex urban environments. However, existing studies often overlook key factors, such as urban airspace constraints and economic efficiency, which are essential in low-altitude economy contexts. Deep reinforcement learning (DRL) is regarded as a promising solution to these issues, while its practical adoption remains limited by low learning efficiency. To overcome this limitation, we propose a novel UAV trajectory planning framework that combines DRL with large language model (LLM) reasoning to enable safe, compliant, and economically viable path planning. Experimental results demonstrate that our method significantly outperforms existing baselines across multiple metrics, including data collection rate, collision avoidance, successful landing, regulatory compliance, and energy efficiency. These results validate the effectiveness of our approach in addressing UAV trajectory planning key challenges under constraints of the low-altitude economy networking.
- Abstract(参考訳): 低高度経済の急速な成長は無人航空機(UAV)の普及を促した。
この展開は、複雑な都市環境におけるUAV軌道計画に新たな課題をもたらす。
しかし、既存の研究は、低高度経済に不可欠な都市空域の制約や経済効率といった重要な要因をしばしば見落としている。
深層強化学習(DRL)はこれらの課題に対して有望な解決策であると見なされているが、その実践的採用は低学習効率によって制限されている。
この制限を克服するために,DRLと大言語モデル(LLM)を組み合わせ,安全かつ適合し,経済的に実行可能な経路計画を可能にする新しいUAV軌道計画フレームワークを提案する。
実験の結果,本手法は,データ収集率,衝突回避率,着陸成功率,規制遵守度,エネルギー効率など,複数の指標において,既存のベースラインを著しく上回ることがわかった。
これらの結果は、低高度経済ネットワークの制約下でのUAV計画の鍵となる課題に対処する上で、我々のアプローチの有効性を検証した。
関連論文リスト
- Hierarchical and Collaborative LLM-Based Control for Multi-UAV Motion and Communication in Integrated Terrestrial and Non-Terrestrial Networks [21.350819743855382]
本研究は,複数のUAVの連立動作と通信制御を地球外ネットワークと非地球外ネットワークで行うことを目的としたものである。
大規模言語モデル(LLM)に基づく新しい階層的協調手法を提案する。
実験により,提案手法は, システム報酬の向上, 運用コストの低減, ベースライン手法と比較してUAV衝突率の大幅な低減を実現していることがわかった。
論文 参考訳(メタデータ) (2025-06-06T20:59:52Z) - VLM-RRT: Vision Language Model Guided RRT Search for Autonomous UAV Navigation [4.022717732460524]
本稿では,視覚言語モデル(VLM)のパターン認識機能とRRT(Rapidly-Exploring Random Trees)の経路計画強度を統合するハイブリッドアプローチであるビジョン言語モデルRT(VLM-RRT)を提案する。
提案手法は, サンプリング効率と経路品質を著しく向上させるため, 実現可能な経路を含む可能性が高い領域に対してサンプリングをバイアスする。
論文 参考訳(メタデータ) (2025-05-29T09:15:44Z) - Low-altitude Friendly-Jamming for Satellite-Maritime Communications via Generative AI-enabled Deep Reinforcement Learning [72.72954660774002]
低地球軌道(LEO)衛星は、海上無線通信で広範囲にわたるデータ通信を支援するために使用できる。
LEO衛星を広範囲にカバーし、チャネルの開放性と組み合わせることで、通信プロセスはセキュリティ上のリスクに悩まされる可能性がある。
本稿では無人航空機による低高度衛星通信システムLEOについて述べる。
論文 参考訳(メタデータ) (2025-01-26T10:13:51Z) - Task Delay and Energy Consumption Minimization for Low-altitude MEC via Evolutionary Multi-objective Deep Reinforcement Learning [52.64813150003228]
無人航空機や他の航空機による低高度経済(LAE)は、輸送、農業、環境監視といった分野に革命をもたらした。
今後の6世代(6G)時代において、UAV支援移動エッジコンピューティング(MEC)は特に山岳や災害に遭った地域のような困難な環境において重要である。
タスクオフロード問題は、主にタスク遅延の最小化とUAVのエネルギー消費のトレードオフに対処するUAV支援MECの重要な問題の一つである。
論文 参考訳(メタデータ) (2025-01-11T02:32:42Z) - Intercepting Unauthorized Aerial Robots in Controlled Airspace Using Reinforcement Learning [2.519319150166215]
制御空域における無人航空機(UAV)の増殖は重大なリスクをもたらす。
この作業は、強化学習(RL)を用いることで、そのような脅威を管理することのできる堅牢で適応的なシステムの必要性に対処する。
固定翼UAV追跡エージェントの訓練にRLを用いる新しい手法を提案する。
論文 参考訳(メタデータ) (2024-07-09T14:45:47Z) - Confidence-Controlled Exploration: Efficient Sparse-Reward Policy Learning for Robot Navigation [72.24964965882783]
強化学習(RL)はロボットナビゲーションにおいて有望なアプローチであり、ロボットは試行錯誤を通じて学習することができる。
現実世界のロボットタスクは、しばしばまばらな報酬に悩まされ、非効率な探索と準最適政策に繋がる。
本稿では,RLに基づくロボットナビゲーションにおいて,報酬関数を変更せずにサンプル効率を向上させる新しい手法であるConfidence-Controlled Exploration (CCE)を紹介する。
論文 参考訳(メタデータ) (2023-06-09T18:45:15Z) - A deep reinforcement learning approach to assess the low-altitude
airspace capacity for urban air mobility [0.0]
都市空力は、低高度空域を利用して高速で安全な旅行手段を提供することを目的としている。
当局は現在も、都市空輸に適用される新しい飛行規則の見直しに取り組んでいる。
深い強化学習アプローチと深い決定論的政策勾配アルゴリズムを用いて,自律型UAV経路計画フレームワークを提案する。
論文 参考訳(メタデータ) (2023-01-23T23:38:05Z) - DL-DRL: A double-level deep reinforcement learning approach for
large-scale task scheduling of multi-UAV [65.07776277630228]
分割・征服フレームワーク(DCF)に基づく二重レベル深層強化学習(DL-DRL)手法を提案する。
特に,上層部DRLモデルにおけるエンコーダ・デコーダ構成ポリシネットワークを設計し,タスクを異なるUAVに割り当てる。
また、低レベルDRLモデルにおける別の注意に基づくポリシーネットワークを利用して、各UAVの経路を構築し、実行されたタスク数を最大化する。
論文 参考訳(メタデータ) (2022-08-04T04:35:53Z) - Efficient UAV Trajectory-Planning using Economic Reinforcement Learning [65.91405908268662]
UAV間でタスクを分散するための経済取引に触発された新しい強化学習アルゴリズムであるREPlannerを紹介します。
エージェントが協力し、リソースを競うことができるマルチエージェント経済ゲームとして、パス計画問題を策定します。
UAV協力によるタスク分布の計算を行うため、Swarmサイズの変化に対して非常に耐性が高い。
論文 参考訳(メタデータ) (2021-03-03T20:54:19Z) - Data Freshness and Energy-Efficient UAV Navigation Optimization: A Deep
Reinforcement Learning Approach [88.45509934702913]
我々は、移動基地局(BS)が配備される複数の無人航空機(UAV)のナビゲーションポリシーを設計する。
我々は、地上BSにおけるデータの鮮度を確保するために、エネルギーや情報年齢(AoI)の制約などの異なる文脈情報を組み込んだ。
提案したトレーニングモデルを適用することで、UAV-BSに対する効果的なリアルタイム軌道ポリシーは、時間とともに観測可能なネットワーク状態をキャプチャする。
論文 参考訳(メタデータ) (2020-02-21T07:29:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。