Hierarchical Neural Collapse Detection Transformer for Class Incremental Object Detection
- URL: http://arxiv.org/abs/2506.08562v1
- Date: Tue, 10 Jun 2025 08:32:28 GMT
- Title: Hierarchical Neural Collapse Detection Transformer for Class Incremental Object Detection
- Authors: Duc Thanh Pham, Hong Dang Nguyen, Nhat Minh Nguyen Quoc, Linh Ngo Van, Sang Dinh Viet, Duc Anh Nguyen,
- Abstract summary: New objects frequently appear in the real world, requiring detection models to continually learn.<n>In this paper, we introduce a novel framework for IOD, called Hier-DETR: Hierarchical Neural Collapse Detection Transformer.
- Score: 3.842866599603453
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, object detection models have witnessed notable performance improvements, particularly with transformer-based models. However, new objects frequently appear in the real world, requiring detection models to continually learn without suffering from catastrophic forgetting. Although Incremental Object Detection (IOD) has emerged to address this challenge, these existing models are still not practical due to their limited performance and prolonged inference time. In this paper, we introduce a novel framework for IOD, called Hier-DETR: Hierarchical Neural Collapse Detection Transformer, ensuring both efficiency and competitive performance by leveraging Neural Collapse for imbalance dataset and Hierarchical relation of classes' labels.
Related papers
- Retrieval Augmented Anomaly Detection (RAAD): Nimble Model Adjustment Without Retraining [3.037546128667634]
We introduce Retrieval Augmented Anomaly Detection, a novel method taking inspiration from Retrieval Augmented Generation.<n>Human annotated examples are sent to a vector store, which can modify model outputs on the very next processed batch for model inference.
arXiv Detail & Related papers (2025-02-26T20:17:16Z) - Dynamic Object Queries for Transformer-based Incremental Object Detection [45.41291377837515]
Incremental object detection aims to sequentially learn new classes, while maintaining the capability to locate and identify old ones.
Prior methodologies mainly tackle the forgetting issue through knowledge distillation and exemplar replay.
We propose DyQ-DETR, which incrementally expands the model representation ability to achieve stability-plasticity tradeoffs.
arXiv Detail & Related papers (2024-07-31T15:29:34Z) - SINDER: Repairing the Singular Defects of DINOv2 [61.98878352956125]
Vision Transformer models trained on large-scale datasets often exhibit artifacts in the patch token they extract.
We propose a novel fine-tuning smooth regularization that rectifies structural deficiencies using only a small dataset.
arXiv Detail & Related papers (2024-07-23T20:34:23Z) - IOR: Inversed Objects Replay for Incremental Object Detection [22.415936450558334]
Many IOD methods rely on the assumption that unlabeled old-class objects may co-occur with labeled new-class objects in the incremental data.<n>This paper argues that previous generation-based IOD suffers from redundancy, both in the use of generative models, which require additional training and storage, and in the overproduction of generated samples.<n>We propose augmented replay to reuse the objects in generated samples, reducing redundant generations.
arXiv Detail & Related papers (2024-06-07T10:54:40Z) - Toward Multi-class Anomaly Detection: Exploring Class-aware Unified Model against Inter-class Interference [67.36605226797887]
We introduce a Multi-class Implicit Neural representation Transformer for unified Anomaly Detection (MINT-AD)
By learning the multi-class distributions, the model generates class-aware query embeddings for the transformer decoder.
MINT-AD can project category and position information into a feature embedding space, further supervised by classification and prior probability loss functions.
arXiv Detail & Related papers (2024-03-21T08:08:31Z) - An Improved Anomaly Detection Model for Automated Inspection of Power Line Insulators [0.0]
Inspection of insulators is important to ensure reliable operation of the power system.
Deep learning is being increasingly exploited to automate the inspection process.
This article proposes the use of anomaly detection along with object detection in a two-stage approach for incipient fault detection.
arXiv Detail & Related papers (2023-11-14T11:36:20Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
We propose a two-stage framework tailored for small object detection based on the Coarse-to-fine pipeline and Feature Imitation learning.
CFINet achieves state-of-the-art performance on the large-scale small object detection benchmarks, SODA-D and SODA-A.
arXiv Detail & Related papers (2023-08-18T13:13:09Z) - Spatial-Temporal Graph Enhanced DETR Towards Multi-Frame 3D Object Detection [54.041049052843604]
We present STEMD, a novel end-to-end framework that enhances the DETR-like paradigm for multi-frame 3D object detection.
First, to model the inter-object spatial interaction and complex temporal dependencies, we introduce the spatial-temporal graph attention network.
Finally, it poses a challenge for the network to distinguish between the positive query and other highly similar queries that are not the best match.
arXiv Detail & Related papers (2023-07-01T13:53:14Z) - Object-centric and memory-guided normality reconstruction for video
anomaly detection [56.64792194894702]
This paper addresses anomaly detection problem for videosurveillance.
Due to the inherent rarity and heterogeneity of abnormal events, the problem is viewed as a normality modeling strategy.
Our model learns object-centric normal patterns without seeing anomalous samples during training.
arXiv Detail & Related papers (2022-03-07T19:28:39Z) - Multi-View Correlation Distillation for Incremental Object Detection [12.536640582318949]
We propose a novel textbfMulti-textbfView textbfCorrelation textbfDistillation (MVCD) based incremental object detection method.
arXiv Detail & Related papers (2021-07-05T04:36:33Z) - Secrets of 3D Implicit Object Shape Reconstruction in the Wild [92.5554695397653]
Reconstructing high-fidelity 3D objects from sparse, partial observation is crucial for various applications in computer vision, robotics, and graphics.
Recent neural implicit modeling methods show promising results on synthetic or dense datasets.
But, they perform poorly on real-world data that is sparse and noisy.
This paper analyzes the root cause of such deficient performance of a popular neural implicit model.
arXiv Detail & Related papers (2021-01-18T03:24:48Z) - Progressive Self-Guided Loss for Salient Object Detection [102.35488902433896]
We present a progressive self-guided loss function to facilitate deep learning-based salient object detection in images.
Our framework takes advantage of adaptively aggregated multi-scale features to locate and detect salient objects effectively.
arXiv Detail & Related papers (2021-01-07T07:33:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.