Solving excited states for long-range interacting trapped ions with neural networks
- URL: http://arxiv.org/abs/2506.08594v1
- Date: Tue, 10 Jun 2025 09:02:59 GMT
- Title: Solving excited states for long-range interacting trapped ions with neural networks
- Authors: Yixuan Ma, Chang Liu, Weikang Li, Shun-Yao Zhang, L. -M. Duan, Yukai Wu, Dong-Ling Deng,
- Abstract summary: We introduce a neural network-based algorithm that simultaneously output multiple low-lying excited states of a quantum many-body spin system.<n>The NQES algorithm is capable of efficiently computing multiple excited states and their related observable expectations.<n>Our results establish a scalable and efficient algorithm for computing excited states of interacting quantum many-body systems.
- Score: 4.294084794573824
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The computation of excited states in strongly interacting quantum many-body systems is of fundamental importance. Yet, it is notoriously challenging due to the exponential scaling of the Hilbert space dimension with the system size. Here, we introduce a neural network-based algorithm that can simultaneously output multiple low-lying excited states of a quantum many-body spin system in an accurate and efficient fashion. This algorithm, dubbed the neural quantum excited-state (NQES) algorithm, requires no explicit orthogonalization of the states and is generally applicable to higher dimensions. We demonstrate, through concrete examples including the Haldane-Shastry model with all-to-all interactions, that the NQES algorithm is capable of efficiently computing multiple excited states and their related observable expectations. In addition, we apply the NQES algorithm to two classes of long-range interacting trapped-ion systems in a two-dimensional Wigner crystal. For non-decaying all-to-all interactions with alternating signs, our computed low-lying excited states bear spatial correlation patterns similar to those of the ground states, which closely match recent experimental observations that the quasi-adiabatically prepared state accurately reproduces analytical ground-state correlations. For a system of up to 300 ions with power-law decaying antiferromagnetic interactions, we successfully uncover its gap scaling and correlation features. Our results establish a scalable and efficient algorithm for computing excited states of interacting quantum many-body systems, which holds potential applications ranging from benchmarking quantum devices to photoisomerization.
Related papers
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - A Novel Quantum Algorithm for Efficient Attractor Search in Gene Regulatory Networks [0.0978224644130106]
We demonstrate a novel quantum search algorithm inspired by Grover's algorithm to be implemented on quantum computing platforms.
The algorithm performs an iterative suppression of states belonging to basins of previously discovered attractors from a uniform superposition.
Tests of its resistance to noise have also shown promising performance on devices from the current Noise Intermediate Scale Quantum Computing (NISQ) era.
arXiv Detail & Related papers (2024-08-16T15:48:45Z) - Subspace-Search Quantum Imaginary Time Evolution for Excited State Computations [0.0]
We introduce the em subspace search quantum imaginary time evolution (SSQITE) method, which calculates excited states using quantum devices.
With its robustness in avoiding local minima, SSQITE shows promise for advancing quantum computations of excited states across a wide range of applications.
arXiv Detail & Related papers (2024-07-15T19:14:45Z) - Solving reaction dynamics with quantum computing algorithms [42.408991654684876]
We study quantum algorithms for response functions, relevant for describing different reactions governed by linear response.<n>We focus on nuclear-physics applications and consider a qubit-efficient mapping on the lattice, which can efficiently represent the large volumes required for realistic scattering simulations.
arXiv Detail & Related papers (2024-03-30T00:21:46Z) - Entanglement transition in deep neural quantum states [0.0]
We show how information propagation in deep neural networks impacts the physical entanglement properties of deep neural quantum states.
With this bridge we can identify optimal neural quantum state hyper parameter regimes for representing area as well as volume law entangled states.
This advance of our understanding of network configurations for accurate quantum state representation helps to develop effective representations to deal with volume-law quantum states.
arXiv Detail & Related papers (2023-12-19T08:40:23Z) - Message-Passing Neural Quantum States for the Homogeneous Electron Gas [41.94295877935867]
We introduce a message-passing-neural-network-based wave function Ansatz to simulate extended, strongly interacting fermions in continuous space.
We demonstrate its accuracy by simulating the ground state of the homogeneous electron gas in three spatial dimensions.
arXiv Detail & Related papers (2023-05-12T04:12:04Z) - Machine learning one-dimensional spinless trapped fermionic systems with
neural-network quantum states [1.6606527887256322]
We compute the ground-state properties of fully polarized, trapped, one-dimensional fermionic systems interacting through a gaussian potential.
We use an antisymmetric artificial neural network, or neural quantum state, as an ansatz for the wavefunction.
We find very different ground states depending on the sign of the interaction.
arXiv Detail & Related papers (2023-04-10T17:36:52Z) - Towards Neural Variational Monte Carlo That Scales Linearly with System
Size [67.09349921751341]
Quantum many-body problems are central to demystifying some exotic quantum phenomena, e.g., high-temperature superconductors.
The combination of neural networks (NN) for representing quantum states, and the Variational Monte Carlo (VMC) algorithm, has been shown to be a promising method for solving such problems.
We propose a NN architecture called Vector-Quantized Neural Quantum States (VQ-NQS) that utilizes vector-quantization techniques to leverage redundancies in the local-energy calculations of the VMC algorithm.
arXiv Detail & Related papers (2022-12-21T19:00:04Z) - Optimal quantum control via genetic algorithms for quantum state
engineering in driven-resonator mediated networks [68.8204255655161]
We employ a machine learning-enabled approach to quantum state engineering based on evolutionary algorithms.
We consider a network of qubits -- encoded in the states of artificial atoms with no direct coupling -- interacting via a common single-mode driven microwave resonator.
We observe high quantum fidelities and resilience to noise, despite the algorithm being trained in the ideal noise-free setting.
arXiv Detail & Related papers (2022-06-29T14:34:00Z) - Neural-Network Quantum States for Periodic Systems in Continuous Space [66.03977113919439]
We introduce a family of neural quantum states for the simulation of strongly interacting systems in the presence of periodicity.
For one-dimensional systems we find very precise estimations of the ground-state energies and the radial distribution functions of the particles.
In two dimensions we obtain good estimations of the ground-state energies, comparable to results obtained from more conventional methods.
arXiv Detail & Related papers (2021-12-22T15:27:30Z) - Variational Monte Carlo calculations of $\mathbf{A\leq 4}$ nuclei with
an artificial neural-network correlator ansatz [62.997667081978825]
We introduce a neural-network quantum state ansatz to model the ground-state wave function of light nuclei.
We compute the binding energies and point-nucleon densities of $Aleq 4$ nuclei as emerging from a leading-order pionless effective field theory Hamiltonian.
arXiv Detail & Related papers (2020-07-28T14:52:28Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
In this paper we combine machine-learning tools and the theory of quantum entanglement to perform entanglement classification for multipartite qubit systems in pure states.
We use a parameterisation of quantum systems using artificial neural networks in a restricted Boltzmann machine (RBM) architecture, known as Neural Network Quantum States (NNS)
arXiv Detail & Related papers (2019-12-31T07:40:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.