論文の概要: Biologically Inspired Deep Learning Approaches for Fetal Ultrasound Image Classification
- arxiv url: http://arxiv.org/abs/2506.08623v1
- Date: Tue, 10 Jun 2025 09:34:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-11 15:11:42.166145
- Title: Biologically Inspired Deep Learning Approaches for Fetal Ultrasound Image Classification
- Title(参考訳): 胎児超音波画像分類のための生物学的深層学習手法
- Authors: Rinat Prochii, Elizaveta Dakhova, Pavel Birulin, Maxim Sharaev,
- Abstract要約: シンプルだが強力で生物学的にインスパイアされたディープラーニングアンサンブルフレームワークを導入します。
我々のモデルは2つの補足枝を積み重ねる(粗く、低解像度なキューのための「浅い」パスと、微細で高解像度な特徴のための「細い」パス)。
臨床画像5,298点を定期的に取得し,評価した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate classification of second-trimester fetal ultrasound images remains challenging due to low image quality, high intra-class variability, and significant class imbalance. In this work, we introduce a simple yet powerful, biologically inspired deep learning ensemble framework that-unlike prior studies focused on only a handful of anatomical targets-simultaneously distinguishes 16 fetal structures. Drawing on the hierarchical, modular organization of biological vision systems, our model stacks two complementary branches (a "shallow" path for coarse, low-resolution cues and a "detailed" path for fine, high-resolution features), concatenating their outputs for final prediction. To our knowledge, no existing method has addressed such a large number of classes with a comparably lightweight architecture. We trained and evaluated on 5,298 routinely acquired clinical images (annotated by three experts and reconciled via Dawid-Skene), reflecting real-world noise and variability rather than a "cleaned" dataset. Despite this complexity, our ensemble (EfficientNet-B0 + EfficientNet-B6 with LDAM-Focal loss) identifies 90% of organs with accuracy > 0.75 and 75% of organs with accuracy > 0.85-performance competitive with more elaborate models applied to far fewer categories. These results demonstrate that biologically inspired modular stacking can yield robust, scalable fetal anatomy recognition in challenging clinical settings.
- Abstract(参考訳): 第2トリメスター胎児超音波像の正確な分類は, 画像品質の低下, クラス内変動の増大, 有意なクラス不均衡が原因で, 依然として困難である。
本研究は,16個の胎児構造を同時に識別する,少数の解剖学的標的にのみ焦点をあてた,シンプルながら強力で生物学的にインスパイアされた深層学習アンサンブルフレームワークを提案する。
生体視覚システムの階層的、モジュール的構造に基づいて、我々のモデルは2つの補足枝(粗い、低解像度なキューのための「浅く」パスと細かな、高解像度な特徴のための「詳細」パス)を積み重ね、最終的な予測のために出力をまとめます。
我々の知る限りでは、このような軽量なアーキテクチャで多くのクラスに対処する既存の手法は存在しない。
我々は,日常的に取得した5,298個の臨床画像(3人の専門家が注釈を付け,Dawid-Skeneを介して和解した)をトレーニングし,評価した。
この複雑さにもかかわらず、我々のアンサンブル(効率的なNet-B0+効率的なNet-B6とLDAM-Focal Los)は、精度が0.75と75%の臓器の90%、精度が0.85の臓器の90%を識別し、より精巧なモデルをより少ないカテゴリーに適用した。
これらの結果は、生物学的にインスパイアされたモジュラー・スタックリングが、挑戦的な臨床環境において堅牢でスケーラブルな胎児解剖学的認識をもたらすことを示している。
関連論文リスト
- Towards Accurate and Interpretable Neuroblastoma Diagnosis via Contrastive Multi-scale Pathological Image Analysis [16.268045905735818]
病理画像分類に適したコントラスト学習に基づくマルチスケール機能融合モデルであるCMSwinKANを提案する。
マルチスケールの特徴を融合させ、対照的な学習戦略を活用することで、CMSwinKANは臨床医の包括的なアプローチを模倣する。
その結果、CMSwinKANは、既存の最先端の病理モデルよりも、大規模なデータセットで事前訓練されたモデルよりもパフォーマンスがよいことが示された。
論文 参考訳(メタデータ) (2025-04-18T15:39:46Z) - HDC: Hierarchical Distillation for Multi-level Noisy Consistency in Semi-Supervised Fetal Ultrasound Segmentation [2.964206587462833]
HDCと呼ばれる新しい半教師付きセグメンテーションフレームワークが提案されている。
この枠組みは,特徴表現の整合化のための相関誘導損失と,雑音の多い学生学習を安定化するための相互情報損失の2つの目的を持つ階層的蒸留機構を導入している。
論文 参考訳(メタデータ) (2025-04-14T04:52:24Z) - Tissue Classification During Needle Insertion Using Self-Supervised
Contrastive Learning and Optical Coherence Tomography [53.38589633687604]
針先端で取得した複雑なCT信号の位相および強度データから組織を分類するディープニューラルネットワークを提案する。
トレーニングセットの10%で、提案した事前学習戦略により、モデルが0.84のF1スコアを達成するのに対して、モデルが0.60のF1スコアを得るのに対して、モデルが0.84のF1スコアを得るのに役立ちます。
論文 参考訳(メタデータ) (2023-04-26T14:11:04Z) - Significantly improving zero-shot X-ray pathology classification via fine-tuning pre-trained image-text encoders [50.689585476660554]
本稿では,正対損失緩和とランダムな文サンプリングを含む新たな微調整手法を提案する。
提案手法は,胸部X線データセットと3つの事前訓練モデル間のゼロショット病理分類を一貫して改善する。
論文 参考訳(メタデータ) (2022-12-14T06:04:18Z) - Mine yOur owN Anatomy: Revisiting Medical Image Segmentation with Extremely Limited Labels [54.58539616385138]
我々は、Mine yOur owN Anatomy (MONA) と呼ばれる、新しい半教師付き2次元医用画像セグメンテーションフレームワークを紹介する。
まず、先行研究では、すべてのピクセルがモデルトレーニングに等しく重要であると論じており、我々はこの1つだけで意味のある解剖学的特徴を定義できないことを経験的に観察している。
第2に,医療画像を解剖学的特徴の集合に分解できるモデルを構築する。
論文 参考訳(メタデータ) (2022-09-27T15:50:31Z) - Application of Transfer Learning and Ensemble Learning in Image-level
Classification for Breast Histopathology [9.037868656840736]
CAD(Computer-Aided Diagnosis)では、従来の分類モデルでは、主に1つのネットワークを使って特徴を抽出する。
本稿では良性病変と悪性病変のバイナリ分類のための画像レベルラベルに基づく深層アンサンブルモデルを提案する。
結果: アンサンブルネットワークモデルにおいて、画像レベルのバイナリ分類は9,8.90%の精度を達成する。
論文 参考訳(メタデータ) (2022-04-18T13:31:53Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
本稿では,エンド・ツー・エンドのMB腫瘍分類を提案し,様々な入力サイズとネットワーク次元の一致した移動学習を提案する。
161ケースのデータセットを用いて、より大規模な入力解像度を持つ事前学習されたEfficientNetが、大幅な性能改善をもたらすことを実証した。
論文 参考訳(メタデータ) (2021-09-10T13:07:11Z) - Vision Transformers for femur fracture classification [59.99241204074268]
Vision Transformer (ViT) はテスト画像の83%を正確に予測することができた。
史上最大かつ最もリッチなデータセットを持つサブフラクチャーで良い結果が得られた。
論文 参考訳(メタデータ) (2021-08-07T10:12:42Z) - DONet: Dual Objective Networks for Skin Lesion Segmentation [77.9806410198298]
本稿では,皮膚病変のセグメンテーションを改善するために,Dual Objective Networks (DONet) という,シンプルで効果的なフレームワークを提案する。
我々のDONetは2つの対称デコーダを採用し、異なる目標に近づくための異なる予測を生成する。
皮膚内視鏡画像における多種多様な病変のスケールと形状の課題に対処するために,再帰的コンテキスト符号化モジュール(RCEM)を提案する。
論文 参考訳(メタデータ) (2020-08-19T06:02:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。