SurfR: Surface Reconstruction with Multi-scale Attention
- URL: http://arxiv.org/abs/2506.08635v1
- Date: Tue, 10 Jun 2025 09:46:36 GMT
- Title: SurfR: Surface Reconstruction with Multi-scale Attention
- Authors: Siddhant Ranade, Gonçalo Dias Pais, Ross Tyler Whitaker, Jacinto C. Nascimento, Pedro Miraldo, Srikumar Ramalingam,
- Abstract summary: We propose a fast and accurate surface reconstruction algorithm for unorganized point clouds using an implicit representation.<n>We achieve the best accuracy-speed trade-off using three key contributions.
- Score: 19.132653429989716
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a fast and accurate surface reconstruction algorithm for unorganized point clouds using an implicit representation. Recent learning methods are either single-object representations with small neural models that allow for high surface details but require per-object training or generalized representations that require larger models and generalize to newer shapes but lack details, and inference is slow. We propose a new implicit representation for general 3D shapes that is faster than all the baselines at their optimum resolution, with only a marginal loss in performance compared to the state-of-the-art. We achieve the best accuracy-speed trade-off using three key contributions. Many implicit methods extract features from the point cloud to classify whether a query point is inside or outside the object. First, to speed up the reconstruction, we show that this feature extraction does not need to use the query point at an early stage (lazy query). Second, we use a parallel multi-scale grid representation to develop robust features for different noise levels and input resolutions. Finally, we show that attention across scales can provide improved reconstruction results.
Related papers
- HORT: Monocular Hand-held Objects Reconstruction with Transformers [61.36376511119355]
Reconstructing hand-held objects in 3D from monocular images is a significant challenge in computer vision.<n>We propose a transformer-based model to efficiently reconstruct dense 3D point clouds of hand-held objects.<n>Our method achieves state-of-the-art accuracy with much faster inference speed, while generalizing well to in-the-wild images.
arXiv Detail & Related papers (2025-03-27T09:45:09Z) - PFGS: High Fidelity Point Cloud Rendering via Feature Splatting [5.866747029417274]
We propose a novel framework to render high-quality images from sparse points.
This method first attempts to bridge the 3D Gaussian Splatting and point cloud rendering.
Experiments on different benchmarks show the superiority of our method in terms of rendering qualities and the necessities of our main components.
arXiv Detail & Related papers (2024-07-04T11:42:54Z) - GridPull: Towards Scalability in Learning Implicit Representations from
3D Point Clouds [60.27217859189727]
We propose GridPull to improve the efficiency of learning implicit representations from large scale point clouds.
Our novelty lies in the fast inference of a discrete distance field defined on grids without using any neural components.
We use uniform grids for a fast grid search to localize sampled queries, and organize surface points in a tree structure to speed up the calculation of distances to the surface.
arXiv Detail & Related papers (2023-08-25T04:52:52Z) - Neural Kernel Surface Reconstruction [80.51581494300423]
We present a novel method for reconstructing a 3D implicit surface from a large-scale, sparse, and noisy point cloud.
Our approach builds upon the recently introduced Neural Kernel Fields representation.
arXiv Detail & Related papers (2023-05-31T06:25:18Z) - Revisiting Point Cloud Simplification: A Learnable Feature Preserving
Approach [57.67932970472768]
Mesh and Point Cloud simplification methods aim to reduce the complexity of 3D models while retaining visual quality and relevant salient features.
We propose a fast point cloud simplification method by learning to sample salient points.
The proposed method relies on a graph neural network architecture trained to select an arbitrary, user-defined, number of points from the input space and to re-arrange their positions so as to minimize the visual perception error.
arXiv Detail & Related papers (2021-09-30T10:23:55Z) - Shape As Points: A Differentiable Poisson Solver [118.12466580918172]
In this paper, we introduce a differentiable point-to-mesh layer using a differentiable formulation of Poisson Surface Reconstruction (PSR)
The differentiable PSR layer allows us to efficiently and differentiably bridge the explicit 3D point representation with the 3D mesh via the implicit indicator field.
Compared to neural implicit representations, our Shape-As-Points (SAP) model is more interpretable, lightweight, and accelerates inference time by one order of magnitude.
arXiv Detail & Related papers (2021-06-07T09:28:38Z) - Meshing Point Clouds with Predicted Intrinsic-Extrinsic Ratio Guidance [30.863194319818223]
We propose to leverage the input point cloud as much as possible, by only adding connectivity information to existing points.
Our key innovation is a surrogate of local connectivity, calculated by comparing the intrinsic/extrinsic metrics.
We demonstrate that our method can not only preserve details, handle ambiguous structures, but also possess strong generalizability to unseen categories.
arXiv Detail & Related papers (2020-07-17T22:36:00Z) - Convolutional Occupancy Networks [88.48287716452002]
We propose Convolutional Occupancy Networks, a more flexible implicit representation for detailed reconstruction of objects and 3D scenes.
By combining convolutional encoders with implicit occupancy decoders, our model incorporates inductive biases, enabling structured reasoning in 3D space.
We empirically find that our method enables the fine-grained implicit 3D reconstruction of single objects, scales to large indoor scenes, and generalizes well from synthetic to real data.
arXiv Detail & Related papers (2020-03-10T10:17:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.