CanadaFireSat: Toward high-resolution wildfire forecasting with multiple modalities
- URL: http://arxiv.org/abs/2506.08690v1
- Date: Tue, 10 Jun 2025 10:58:43 GMT
- Title: CanadaFireSat: Toward high-resolution wildfire forecasting with multiple modalities
- Authors: Hugo Porta, Emanuele Dalsasso, Jessica L. McCarty, Devis Tuia,
- Abstract summary: Canada experienced one of the most severe wildfire seasons in recent history in 2023.<n>This extreme wildfire season is symptomatic of a climate-change-induced increase in the length and severity of the fire season that affects the boreal ecosystem.<n>It is critical to empower wildfire management in boreal communities with better mitigation solutions.
- Score: 3.8153349016958074
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Canada experienced in 2023 one of the most severe wildfire seasons in recent history, causing damage across ecosystems, destroying communities, and emitting large quantities of CO2. This extreme wildfire season is symptomatic of a climate-change-induced increase in the length and severity of the fire season that affects the boreal ecosystem. Therefore, it is critical to empower wildfire management in boreal communities with better mitigation solutions. Wildfire probability maps represent an important tool for understanding the likelihood of wildfire occurrence and the potential severity of future wildfires. The massive increase in the availability of Earth observation data has enabled the development of deep learning-based wildfire forecasting models, aiming at providing precise wildfire probability maps at different spatial and temporal scales. A main limitation of such methods is their reliance on coarse-resolution environmental drivers and satellite products, leading to wildfire occurrence prediction of reduced resolution, typically around $\sim 0.1${\deg}. This paper presents a benchmark dataset: CanadaFireSat, and baseline methods for high-resolution: 100 m wildfire forecasting across Canada, leveraging multi-modal data from high-resolution multi-spectral satellite images (Sentinel-2 L1C), mid-resolution satellite products (MODIS), and environmental factors (ERA5 reanalysis data). Our experiments consider two major deep learning architectures. We observe that using multi-modal temporal inputs outperforms single-modal temporal inputs across all metrics, achieving a peak performance of 60.3% in F1 score for the 2023 wildfire season, a season never seen during model training. This demonstrates the potential of multi-modal deep learning models for wildfire forecasting at high-resolution and continental scale.
Related papers
- A Real-time Multimodal Transformer Neural Network-powered Wildfire Forecasting System [11.958132175629363]
The extreme wildfire has become one of the most dangerous natural hazards to human civilization.<n>To accurately forecast wildfire occurrence has become one of most urgent and taunting environmental challenges in global scale.<n>In this work, we developed a real-time Multimodal Transformer Neural Network Machine Learning model that practically forecast the occurrence of wildfire at the precise location in real time.
arXiv Detail & Related papers (2025-03-07T22:48:46Z) - FireCastNet: Earth-as-a-Graph for Seasonal Fire Prediction [2.748450182087935]
We present FireCastNet, a novel architecture which combines a 3D convolutional encoder with GraphCast.<n>FireCastNet is trained to capture the context leading to wildfires, at different spatial and temporal scales.<n>Our investigation focuses on assessing the effectiveness of our model in predicting the presence of burned areas.
arXiv Detail & Related papers (2025-02-03T17:30:45Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
Downscaling, a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions.
Previous downscaling methods lacked tailored designs for meteorology and encountered structural limitations.
We propose a novel model called MambaDS, which enhances the utilization of multivariable correlations and topography information.
arXiv Detail & Related papers (2024-08-20T13:45:49Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
This work presents FengWu-GHR, the first data-driven global weather forecasting model running at the 0.09$circ$ horizontal resolution.
It introduces a novel approach that opens the door for operating ML-based high-resolution forecasts by inheriting prior knowledge from a low-resolution model.
The hindcast of weather prediction in 2022 indicates that FengWu-GHR is superior to the IFS-HRES.
arXiv Detail & Related papers (2024-01-28T13:23:25Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - Deep graphical regression for jointly moderate and extreme Australian
wildfires [0.7864304771129751]
Recent wildfires in Australia have led to considerable economic loss and property destruction.
There is increasing concern that climate change may exacerbate their intensity, duration, and frequency.
It is imperative to develop robust statistical methods to reliably model the full distribution of wildfire spread.
arXiv Detail & Related papers (2023-08-28T13:04:52Z) - Pangu-Weather: A 3D High-Resolution Model for Fast and Accurate Global
Weather Forecast [91.9372563527801]
We present Pangu-Weather, a deep learning based system for fast and accurate global weather forecast.
For the first time, an AI-based method outperforms state-of-the-art numerical weather prediction (NWP) methods in terms of accuracy.
Pangu-Weather supports a wide range of downstream forecast scenarios, including extreme weather forecast and large-member ensemble forecast in real-time.
arXiv Detail & Related papers (2022-11-03T17:19:43Z) - Preliminary Wildfire Detection Using State-of-the-art PTZ (Pan, Tilt,
Zoom) Camera Technology and Convolutional Neural Networks [0.0]
Wildfires are uncontrolled fires in the environment that can be caused by humans or nature.
In 2020 alone, wildfires in California have burned 4.2 million acres, damaged 10,500 buildings or structures, and killed more than 31 people.
The objective of the research is to detect forest fires in their earlier stages to prevent them from spreading.
arXiv Detail & Related papers (2021-09-10T19:30:37Z) - Mitigating Greenhouse Gas Emissions Through Generative Adversarial
Networks Based Wildfire Prediction [11.484140660635239]
We develop a deep learning based data augmentation approach for wildfire risk prediction.
By adopting the proposed method, we can take preventive strategies of wildfire mitigation to reduce global GHG emissions.
arXiv Detail & Related papers (2021-08-20T00:36:30Z) - From Static to Dynamic Prediction: Wildfire Risk Assessment Based on
Multiple Environmental Factors [69.9674326582747]
Wildfire is one of the biggest disasters that frequently occurs on the west coast of the United States.
We propose static and dynamic prediction models to analyze and assess the areas with high wildfire risks in California.
arXiv Detail & Related papers (2021-03-14T17:56:17Z) - Dynamic Community Detection into Analyzing of Wildfires Events [55.72431452586636]
We investigate the information that dynamic community structures reveal about the dynamics of wildfires.
Experiments with the MODIS dataset of fire events in the Amazon basing were conducted.
Our results show that the dynamic communities can reveal wildfire patterns observed throughout the year.
arXiv Detail & Related papers (2020-11-02T17:31:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.