A Real-time Multimodal Transformer Neural Network-powered Wildfire Forecasting System
- URL: http://arxiv.org/abs/2503.05971v2
- Date: Wed, 12 Mar 2025 03:22:04 GMT
- Title: A Real-time Multimodal Transformer Neural Network-powered Wildfire Forecasting System
- Authors: Qijun Chen, Shaofan Li,
- Abstract summary: The extreme wildfire has become one of the most dangerous natural hazards to human civilization.<n>To accurately forecast wildfire occurrence has become one of most urgent and taunting environmental challenges in global scale.<n>In this work, we developed a real-time Multimodal Transformer Neural Network Machine Learning model that practically forecast the occurrence of wildfire at the precise location in real time.
- Score: 11.958132175629363
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Due to climate change, the extreme wildfire has become one of the most dangerous natural hazards to human civilization. Even though, some wildfires may be initially caused by human activity, but the spread of wildfires is mainly determined by environmental factors, for examples, (1) weather conditions such as temperature, wind direction and intensity, and moisture levels; (2) the amount and types of dry vegetation in a local area, and (3) topographic or local terrian conditions, which affects how much rain an area gets and how fire dynamics will be constrained or faciliated. Thus, to accurately forecast wildfire occurrence has become one of most urgent and taunting environmental challenges in global scale. In this work, we developed a real-time Multimodal Transformer Neural Network Machine Learning model that combines several advanced artificial intelligence techniques and statistical methods to practically forecast the occurrence of wildfire at the precise location in real time, which not only utilizes large scale data information such as hourly weather forecasting data, but also takes into account small scale topographical data such as local terrain condition and local vegetation conditions collecting from Google Earth images to determine the probabilities of wildfire occurrence location at small scale as well as their timing synchronized with weather forecast information. By using the wildfire data in the United States from 1992 to 2015 to train the multimodal transformer neural network, it can predict the probabilities of wildfire occurrence according to the real-time weather forecast and the synchronized Google Earth image data to provide the wildfire occurrence probability in any small location ($100m^2$) within 24 hours ahead.
Related papers
- Global Lightning-Ignited Wildfires Prediction and Climate Change Projections based on Explainable Machine Learning Models [0.8039067099377079]
Wildfires pose a significant natural disaster risk to populations and contribute to accelerated climate change.
We present machine learning models designed to characterize and predict lightning-ignited wildfires on a global scale.
We analyze seasonal and spatial trends in lightning-ignited wildfires shedding light on the impact of climate change on this phenomenon.
arXiv Detail & Related papers (2024-09-16T07:19:08Z) - Generating Fine-Grained Causality in Climate Time Series Data for Forecasting and Anomaly Detection [67.40407388422514]
We design a conceptual fine-grained causal model named TBN Granger Causality.
Second, we propose an end-to-end deep generative model called TacSas, which discovers TBN Granger Causality in a generative manner.
We test TacSas on climate benchmark ERA5 for climate forecasting and the extreme weather benchmark of NOAA for extreme weather alerts.
arXiv Detail & Related papers (2024-08-08T06:47:21Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - Multimodal Wildland Fire Smoke Detection [5.15911752972989]
Research has shown that climate change creates warmer temperatures and drier conditions, leading to longer wildfire seasons and increased wildfire risks in the U.S.
We present our work on integrating multiple data sources in SmokeyNet, a deep learning model usingtemporal information to detect smoke from wildland fires.
With a time-to-detection of only a few minutes, SmokeyNet can serve as an automated early notification system, providing a useful tool in the fight against destructive wildfires.
arXiv Detail & Related papers (2022-12-29T01:16:06Z) - GraphCast: Learning skillful medium-range global weather forecasting [107.40054095223779]
We introduce a machine learning-based method called "GraphCast", which can be trained directly from reanalysis data.
It predicts hundreds of weather variables, over 10 days at 0.25 degree resolution globally, in under one minute.
We show that GraphCast significantly outperforms the most accurate operational deterministic systems on 90% of 1380 verification targets.
arXiv Detail & Related papers (2022-12-24T18:15:39Z) - Multi-scale Digital Twin: Developing a fast and physics-informed
surrogate model for groundwater contamination with uncertain climate models [53.44486283038738]
Climate change exacerbates the long-term soil management problem of groundwater contamination.
We develop a physics-informed machine learning surrogate model using U-Net enhanced Fourier Neural Contaminated (PDENO)
In parallel, we develop a convolutional autoencoder combined with climate data to reduce the dimensionality of climatic region similarities across the United States.
arXiv Detail & Related papers (2022-11-20T06:46:35Z) - Pangu-Weather: A 3D High-Resolution Model for Fast and Accurate Global
Weather Forecast [91.9372563527801]
We present Pangu-Weather, a deep learning based system for fast and accurate global weather forecast.
For the first time, an AI-based method outperforms state-of-the-art numerical weather prediction (NWP) methods in terms of accuracy.
Pangu-Weather supports a wide range of downstream forecast scenarios, including extreme weather forecast and large-member ensemble forecast in real-time.
arXiv Detail & Related papers (2022-11-03T17:19:43Z) - Multi-time Predictions of Wildfire Grid Map using Remote Sensing Local
Data [0.0]
This paper proposes a distributed learning framework that shares local data collected in ten locations in the western USA throughout local agents.
The proposed model has distinct features that address the characteristic need in prediction evaluations, including dynamic online estimation and time-series modeling.
arXiv Detail & Related papers (2022-09-15T22:34:06Z) - Preliminary Wildfire Detection Using State-of-the-art PTZ (Pan, Tilt,
Zoom) Camera Technology and Convolutional Neural Networks [0.0]
Wildfires are uncontrolled fires in the environment that can be caused by humans or nature.
In 2020 alone, wildfires in California have burned 4.2 million acres, damaged 10,500 buildings or structures, and killed more than 31 people.
The objective of the research is to detect forest fires in their earlier stages to prevent them from spreading.
arXiv Detail & Related papers (2021-09-10T19:30:37Z) - From Static to Dynamic Prediction: Wildfire Risk Assessment Based on
Multiple Environmental Factors [69.9674326582747]
Wildfire is one of the biggest disasters that frequently occurs on the west coast of the United States.
We propose static and dynamic prediction models to analyze and assess the areas with high wildfire risks in California.
arXiv Detail & Related papers (2021-03-14T17:56:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.