論文の概要: Explainable Compliance Detection with Multi-Hop Natural Language Inference on Assurance Case Structure
- arxiv url: http://arxiv.org/abs/2506.08713v1
- Date: Tue, 10 Jun 2025 11:56:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-11 15:11:42.372969
- Title: Explainable Compliance Detection with Multi-Hop Natural Language Inference on Assurance Case Structure
- Title(参考訳): 保証事例構造に基づくマルチホップ自然言語推論による説明可能なコンプライアンス検出
- Authors: Fariz Ikhwantri, Dusica Marijan,
- Abstract要約: 自然言語推論(NLI)に基づくコンプライアンス検出手法を提案する。
保証ケースのクレーム・アビデンス・エビデンス構造をマルチホップ推論として定式化し、説明可能かつトレーサブルなコンプライアンス検出を行う。
本結果は,規制コンプライアンスプロセスの自動化におけるNLIベースのアプローチの可能性を強調した。
- 参考スコア(独自算出の注目度): 1.5653612447564105
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ensuring complex systems meet regulations typically requires checking the validity of assurance cases through a claim-argument-evidence framework. Some challenges in this process include the complicated nature of legal and technical texts, the need for model explanations, and limited access to assurance case data. We propose a compliance detection approach based on Natural Language Inference (NLI): EXplainable CompLiance detection with Argumentative Inference of Multi-hop reasoning (EXCLAIM). We formulate the claim-argument-evidence structure of an assurance case as a multi-hop inference for explainable and traceable compliance detection. We address the limited number of assurance cases by generating them using large language models (LLMs). We introduce metrics that measure the coverage and structural consistency. We demonstrate the effectiveness of the generated assurance case from GDPR requirements in a multi-hop inference task as a case study. Our results highlight the potential of NLI-based approaches in automating the regulatory compliance process.
- Abstract(参考訳): 複雑なシステムの規制を満たすためには、クレーム・アビデンス・エビデンス・フレームワークを通じて保証ケースの妥当性を確認する必要がある。
このプロセスにおけるいくつかの課題は、法的および技術的テキストの複雑な性質、モデル説明の必要性、保証ケースデータへのアクセス制限などである。
本稿では,自然言語推論(NLI)に基づくコンプライアンス検出手法を提案する。
保証ケースのクレーム・アビデンス・エビデンス構造をマルチホップ推論として定式化し、説明可能かつトレーサブルなコンプライアンス検出を行う。
大規模言語モデル (LLM) を用いて, 保証事例の限られた数に対処する。
カバレッジと構造的な一貫性を測定するメトリクスを導入します。
マルチホップ推論タスクにおけるGDPR要求から生成された保証事例の有効性を事例として示す。
本結果は,規制コンプライアンスプロセスの自動化におけるNLIベースのアプローチの可能性を強調した。
関連論文リスト
- Federated In-Context Learning: Iterative Refinement for Improved Answer Quality [62.72381208029899]
In-context Learning (ICL) では、入力に提供される例を活用することで、パラメータを変更することなく、言語モデルで応答を生成することができる。
我々は,反復的協調プロセスを通じてICLを強化する汎用フレームワークであるFederated In-Context Learning (Fed-ICL)を提案する。
Fed-ICLは、クライアントと中央サーバ間のマルチラウンドインタラクションを活用することで、応答を徐々に洗練し、モデルパラメータを送信することなく、応答品質を向上させる。
論文 参考訳(メタデータ) (2025-06-09T05:33:28Z) - CLATTER: Comprehensive Entailment Reasoning for Hallucination Detection [60.98964268961243]
我々は,系統的かつ包括的な推論プロセスを実行するためのモデルを導くことで,モデルがよりきめ細やかで正確な絞り込み決定を実行できることを提案する。
我々は,(i)クレームの分解,(ii)サブクレームの属性と包含分類,および(iii)集約分類から成る3段階の推論プロセスを定義し,そのような導出推論が実際に幻覚検出の改善をもたらすことを示す。
論文 参考訳(メタデータ) (2025-06-05T17:02:52Z) - VerifyThisBench: Generating Code, Specifications, and Proofs All at Once [5.783301542485619]
エンドツーエンドのプログラム検証タスクにおいて,大規模言語モデル(LLM)を評価するために設計された新しいベンチマークを導入する。
評価の結果,o3-miniのような最先端(SOTA)モデルでさえ4%未満のパス率を達成でき,多くの出力がコンパイルに失敗していることがわかった。
論文 参考訳(メタデータ) (2025-05-25T19:00:52Z) - Improving Multilingual Retrieval-Augmented Language Models through Dialectic Reasoning Argumentations [65.11348389219887]
そこで,Dialectic-RAG(Dialectic-RAG, DRAG)を提案する。
我々は、文脈内学習戦略と、より小さなモデルをインストラクションするための実演の構築の両方において、我々のフレームワークが与える影響を示す。
論文 参考訳(メタデータ) (2025-04-07T06:55:15Z) - Elevating Legal LLM Responses: Harnessing Trainable Logical Structures and Semantic Knowledge with Legal Reasoning [19.477062052536887]
意味と論理的コヒーレンスを橋渡しする教師ありフレームワークである論理・意味統合モデル(LSIM)を提案する。
LSIMは3つの要素から構成される: 強化学習は各質問に対して構造化されたファクトルールチェーンを予測し、訓練可能なDeep Structured Semantic Model(DSSM)は最も関連性の高い質問を検索し、回答内学習は最終回答を生成する。
LSIMが従来の手法に比べて精度と信頼性を著しく向上させるような,自動測定と人的評価デーモンレートによる実世界の法的データセットのQA検証実験を行った。
論文 参考訳(メタデータ) (2025-02-11T19:33:07Z) - Few-shot Policy (de)composition in Conversational Question Answering [54.259440408606515]
本稿では,大規模言語モデル(LLM)を用いて数ショット設定でポリシーコンプライアンスを検出するニューラルシンボリックフレームワークを提案する。
提案手法は,回答すべきサブクエストを抽出し,文脈情報から真理値を割り当て,与えられたポリシーから論理文の集合を明示的に生成することで,政策コンプライアンスに関する会話に対して健全な理由を示す。
本手法は,PCDおよび会話機械読解ベンチマークであるShARCに適用し,タスク固有の微調整を伴わずに競合性能を示す。
論文 参考訳(メタデータ) (2025-01-20T08:40:15Z) - Rethinking State Disentanglement in Causal Reinforcement Learning [78.12976579620165]
因果性は、根底にある状態が識別可能性によって一意に回復できることを保証するための厳密な理論的支援を提供する。
我々はこの研究ラインを再考し、RL固有のコンテキストを取り入れることで、潜在状態に対する以前の識別可能性分析における不要な仮定を低減できることを示した。
本稿では, 従来手法の複雑な構造制約を, 遷移と報酬保存の2つの簡単な制約に置き換えることにより, 一般に部分的に観測可能なマルコフ決定過程(POMDP)を提案する。
論文 参考訳(メタデータ) (2024-08-24T06:49:13Z) - From Chaos to Clarity: Claim Normalization to Empower Fact-Checking [57.024192702939736]
Claim Normalization(別名 ClaimNorm)は、複雑でノイズの多いソーシャルメディア投稿を、より単純で分かりやすい形式に分解することを目的としている。
本稿では,チェーン・オブ・ソートとクレーム・チェック・バシネス推定を利用した先駆的アプローチであるCACNを提案する。
実験により, CACNは様々な評価尺度において, いくつかの基準値を上回る性能を示した。
論文 参考訳(メタデータ) (2023-10-22T16:07:06Z) - Trusta: Reasoning about Assurance Cases with Formal Methods and Large
Language Models [4.005483185111992]
Trustworthiness Derivation Tree Analyzer (Trusta)は、TDTを自動構築し検証するデスクトップアプリケーションである。
バックエンドにはPrologインタプリタが内蔵されており、制約解決器Z3とMONAによってサポートされている。
Trustaは自然言語のテキストから形式的な制約を抽出し、解釈と検証を容易にする。
論文 参考訳(メタデータ) (2023-09-22T15:42:43Z) - Case-Based Abductive Natural Language Inference [4.726777092009554]
事例ベース帰納的自然言語推論(CB-ANLI)
事例ベース帰納的自然言語推論(CB-ANLI)
論文 参考訳(メタデータ) (2020-09-30T09:50:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。