論文の概要: Flexible and Efficient Drift Detection without Labels
- arxiv url: http://arxiv.org/abs/2506.08734v1
- Date: Tue, 10 Jun 2025 12:31:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-11 15:11:42.452329
- Title: Flexible and Efficient Drift Detection without Labels
- Title(参考訳): ラベルのないフレキシブルかつ効率的なドリフト検出
- Authors: Nelvin Tan, Yu-Ching Shih, Dong Yang, Amol Salunkhe,
- Abstract要約: 概念ドリフトに関する多くの研究は、教師付きタスクの真のラベルが予測された直後に利用可能であると仮定する教師付きケースに焦点を当てている。
ラベルレス環境での古典的統計的プロセス制御を用いたフレキシブルで効率的なドリフト検出アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 4.517793609535323
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning models are being increasingly used to automate decisions in almost every domain, and ensuring the performance of these models is crucial for ensuring high quality machine learning enabled services. Ensuring concept drift is detected early is thus of the highest importance. A lot of research on concept drift has focused on the supervised case that assumes the true labels of supervised tasks are available immediately after making predictions. Controlling for false positives while monitoring the performance of predictive models used to make inference from extremely large datasets periodically, where the true labels are not instantly available, becomes extremely challenging. We propose a flexible and efficient concept drift detection algorithm that uses classical statistical process control in a label-less setting to accurately detect concept drifts. We shown empirically that under computational constraints, our approach has better statistical power than previous known methods. Furthermore, we introduce a new drift detection framework to model the scenario of detecting drift (without labels) given prior detections, and show our how our drift detection algorithm can be incorporated effectively into this framework. We demonstrate promising performance via numerical simulations.
- Abstract(参考訳): マシンラーニングモデルは、ほぼすべてのドメインでの意思決定を自動化するために、ますます使われています。
コンセプトドリフトが早期に検出されるようにすることが最も重要である。
概念ドリフトに関する多くの研究は、教師付きタスクの真のラベルが予測された直後に利用可能であると仮定する教師付きケースに焦点を当てている。
偽陽性を制御しながら予測モデルのパフォーマンスを監視し、非常に大きなデータセットから定期的に推論する。
ラベルのない環境での古典的な統計的プロセス制御を用いて,概念ドリフトを正確に検出する,フレキシブルで効率的な概念ドリフト検出アルゴリズムを提案する。
計算制約下では,従来の手法よりも統計的に優れていることを示す。
さらに,先行検出によるドリフト検出(ラベルなし)のシナリオをモデル化する新たなドリフト検出フレームワークを導入し,このフレームワークにドリフト検出アルゴリズムを効果的に組み込む方法を示す。
数値シミュレーションによる有望な性能を示す。
関連論文リスト
- TrajSSL: Trajectory-Enhanced Semi-Supervised 3D Object Detection [59.498894868956306]
Pseudo-labeling approach to semi-supervised learning は教師-学生の枠組みを採用する。
我々は、事前学習した動き予測モデルを活用し、擬似ラベル付きデータに基づいて物体軌跡を生成する。
提案手法は2つの異なる方法で擬似ラベル品質を向上する。
論文 参考訳(メタデータ) (2024-09-17T05:35:00Z) - Unsupervised Concept Drift Detection from Deep Learning Representations in Real-time [5.999777817331315]
コンセプト・ドリフト(英: Concept Drift)は、対象領域の基本的なデータ分布と統計的性質が時間とともに変化する現象である。
我々は、教師なしリアルタイム概念ドリフト検出フレームワークDriftLensを提案する。
深層学習表現の分布距離を利用して非構造化データに作用する。
論文 参考訳(メタデータ) (2024-06-24T23:41:46Z) - Self-Supervised Class-Agnostic Motion Prediction with Spatial and Temporal Consistency Regularizations [53.797896854533384]
クラスに依存しない動き予測法は点雲全体の動きを直接予測する。
既存のほとんどのメソッドは、完全に教師付き学習に依存しているが、ポイントクラウドデータの手作業によるラベル付けは、手間と時間を要する。
3つの簡単な空間的・時間的正則化損失を導入し,自己指導型学習プロセスの効率化を図る。
論文 参考訳(メタデータ) (2024-03-20T02:58:45Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
本研究では,新しい運転環境に3次元物体検出器を適応させる手法を提案する。
提案手法は,空間的量子化履歴特徴を用いたLiDARに基づく検出モデルを強化する。
実世界のデータセットの実験では、大幅な改善が示されている。
論文 参考訳(メタデータ) (2023-09-21T15:00:31Z) - CADM: Confusion Model-based Detection Method for Real-drift in Chunk
Data Stream [3.0885191226198785]
コンセプトドリフト検出は、健康モニタリングや故障診断といった現実の多くの応用において重要であることから、かなりの注目を集めている。
本稿では,概念的混乱に基づく限定アノテーションを用いて,チャンクデータストリーム内のリアルタイムドリフトを検出する手法を提案する。
論文 参考訳(メタデータ) (2023-03-25T08:59:27Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
実世界の機械学習デプロイメントは、ソース(トレーニング)とターゲット(テスト)ディストリビューションのミスマッチによって特徴づけられる。
本研究では,ラベル付きソースデータとラベルなしターゲットデータのみを用いて,対象領域の精度を予測する手法を検討する。
本稿では,モデルの信頼度をしきい値として学習し,精度をラベルなし例のごく一部として予測する実践的手法である平均閾値保持信頼度(ATC)を提案する。
論文 参考訳(メタデータ) (2022-01-11T23:01:12Z) - Task-Sensitive Concept Drift Detector with Metric Learning [7.706795195017394]
提案手法は, 実測時に真のラベルにアクセスすることなくドリフトを検出することのできる, タスク依存型ドリフト検出フレームワークである。
ドリフトが分類性能に影響を与える実際のドリフトを検出し、仮想ドリフトを適切に無視することができる。
本稿では, 検出精度, 偽陽性率, 検出遅延の標準指標を1つの値に蓄積する新しい指標を用いて, 提案手法の性能評価を行う。
論文 参考訳(メタデータ) (2021-08-16T09:10:52Z) - Detecting Concept Drift With Neural Network Model Uncertainty [0.0]
不確実ドリフト検出(UDD)は、真のラベルにアクセスすることなくドリフトを検出することができる。
入力データに基づくドリフト検出とは対照的に,現在の入力データが予測モデルの特性に与える影響を考察する。
UDDは2つの合成および10の実世界のデータセットにおいて、回帰処理と分類処理の両方において、他の最先端戦略よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-07-05T08:56:36Z) - Towards Reducing Labeling Cost in Deep Object Detection [61.010693873330446]
本稿では,検知器の不確実性と頑健性の両方を考慮した,アクティブラーニングのための統一的なフレームワークを提案する。
提案手法は, 確率分布のドリフトを抑えながら, 極めて確実な予測を擬似ラベル化することができる。
論文 参考訳(メタデータ) (2021-06-22T16:53:09Z) - DriftSurf: A Risk-competitive Learning Algorithm under Concept Drift [12.579800289829963]
ストリーミングデータから学ぶとき、概念ドリフト(concept drift)とも呼ばれるデータ分散の変化は、以前に学習したモデルが不正確なものになる可能性がある。
本研究では,ドリフト検出をより広範な安定状態/反応性状態プロセスに組み込むことにより,従来のドリフト検出に基づく手法を拡張する適応学習アルゴリズムを提案する。
このアルゴリズムはベースラーナーにおいて汎用的であり、様々な教師付き学習問題に適用できる。
論文 参考訳(メタデータ) (2020-03-13T23:25:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。