論文の概要: Detecting Concept Drift With Neural Network Model Uncertainty
- arxiv url: http://arxiv.org/abs/2107.01873v1
- Date: Mon, 5 Jul 2021 08:56:36 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-06 19:33:22.431606
- Title: Detecting Concept Drift With Neural Network Model Uncertainty
- Title(参考訳): ニューラルネットワークモデルの不確かさによるコンセプトドリフトの検出
- Authors: Lucas Baier, Tim Schl\"or, Jakob Sch\"offer, Niklas K\"uhl
- Abstract要約: 不確実ドリフト検出(UDD)は、真のラベルにアクセスすることなくドリフトを検出することができる。
入力データに基づくドリフト検出とは対照的に,現在の入力データが予測モデルの特性に与える影響を考察する。
UDDは2つの合成および10の実世界のデータセットにおいて、回帰処理と分類処理の両方において、他の最先端戦略よりも優れていることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deployed machine learning models are confronted with the problem of changing
data over time, a phenomenon also called concept drift. While existing
approaches of concept drift detection already show convincing results, they
require true labels as a prerequisite for successful drift detection.
Especially in many real-world application scenarios-like the ones covered in
this work-true labels are scarce, and their acquisition is expensive.
Therefore, we introduce a new algorithm for drift detection, Uncertainty Drift
Detection (UDD), which is able to detect drifts without access to true labels.
Our approach is based on the uncertainty estimates provided by a deep neural
network in combination with Monte Carlo Dropout. Structural changes over time
are detected by applying the ADWIN technique on the uncertainty estimates, and
detected drifts trigger a retraining of the prediction model. In contrast to
input data-based drift detection, our approach considers the effects of the
current input data on the properties of the prediction model rather than
detecting change on the input data only (which can lead to unnecessary
retrainings). We show that UDD outperforms other state-of-the-art strategies on
two synthetic as well as ten real-world data sets for both regression and
classification tasks.
- Abstract(参考訳): デプロイされた機械学習モデルは、時間とともにデータを変更する問題、すなわちコンセプトドリフト(concept drift)に直面する。
既存のドリフト検出のアプローチはすでに説得力のある結果を示しているが、ドリフト検出を成功させるためには真のラベルが必要である。
特に、多くの現実世界のアプリケーションシナリオでは、このワークトゥルラベルでカバーされているものはほとんどなく、買収は高価です。
そこで本研究では,ドリフト検出のための新しいアルゴリズムである不確実性ドリフト検出(udd)を提案する。
このアプローチは、深いニューラルネットワークがモンテカルロドロップアウトと組み合わせた不確実性推定に基づいている。
不確実性推定にadwin法を適用して構造変化を検出し、検出されたドリフトが予測モデルの再訓練をトリガーする。
入力データに基づくドリフト検出とは対照的に,本手法では,入力データのみの変化を検出するのではなく,現在の入力データによる予測モデルの性質への影響を検討する。
UDDは2つの合成および10の実世界のデータセットにおいて、回帰処理と分類処理の両方において、他の最先端戦略よりも優れていることを示す。
関連論文リスト
- Open-Set Deepfake Detection: A Parameter-Efficient Adaptation Method with Forgery Style Mixture [58.60915132222421]
本稿では,顔偽造検出に汎用的かつパラメータ効率の高い手法を提案する。
フォージェリー・ソース・ドメインの多様性を増大させるフォージェリー・ミックス・フォーミュレーションを設計する。
設計したモデルは、トレーニング可能なパラメータを著しく減らし、最先端の一般化性を実現する。
論文 参考訳(メタデータ) (2024-08-23T01:53:36Z) - A Neighbor-Searching Discrepancy-based Drift Detection Scheme for Learning Evolving Data [40.00357483768265]
本研究では,Nighbor-Searching Discrepancyに基づく新しい概念ドリフト検出手法を提案する。
提案手法は,仮想ドリフトを無視しながら,実概念ドリフトを高精度に検出することができる。
また、ある階級の侵略や撤退を特定することで、分類境界の変化の方向を示すこともできる。
論文 参考訳(メタデータ) (2024-05-23T04:03:36Z) - Deep Neural Networks Tend To Extrapolate Predictably [51.303814412294514]
ニューラルネットワークの予測は、アウト・オブ・ディストリビューション(OOD)入力に直面した場合、予測不可能で過信される傾向がある。
我々は、入力データがOODになるにつれて、ニューラルネットワークの予測が一定値に向かう傾向があることを観察する。
我々は、OOD入力の存在下でリスクに敏感な意思決定を可能にするために、私たちの洞察を実際に活用する方法を示します。
論文 参考訳(メタデータ) (2023-10-02T03:25:32Z) - CADM: Confusion Model-based Detection Method for Real-drift in Chunk
Data Stream [3.0885191226198785]
コンセプトドリフト検出は、健康モニタリングや故障診断といった現実の多くの応用において重要であることから、かなりの注目を集めている。
本稿では,概念的混乱に基づく限定アノテーションを用いて,チャンクデータストリーム内のリアルタイムドリフトを検出する手法を提案する。
論文 参考訳(メタデータ) (2023-03-25T08:59:27Z) - Watermarking for Out-of-distribution Detection [76.20630986010114]
Out-of-Distribution (OOD) 検出は、よく訓練された深層モデルから抽出された表現に基づいてOODデータを識別することを目的としている。
本稿では,透かしという一般的な手法を提案する。
我々は,元データの特徴に重畳される統一パターンを学習し,ウォーターマーキング後にモデルの検出能力が大きく向上する。
論文 参考訳(メタデータ) (2022-10-27T06:12:32Z) - Autoregressive based Drift Detection Method [0.0]
我々はADDMと呼ばれる自己回帰モデルに基づく新しい概念ドリフト検出手法を提案する。
以上の結果から,新しいドリフト検出法は最先端ドリフト検出法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2022-03-09T14:36:16Z) - Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D
Object Detection [85.11649974840758]
3Dオブジェクト検出ネットワークは、トレーニングされたデータに対してバイアスを受ける傾向がある。
そこで本研究では,ライダーを用いた3次元物体検出器のソースレス・教師なし領域適応のための単一フレーム手法を提案する。
論文 参考訳(メタデータ) (2021-11-30T18:42:42Z) - Bayesian Autoencoders for Drift Detection in Industrial Environments [69.93875748095574]
オートエンコーダは、マルチセンサー環境で異常を検出するために使用される教師なしモデルである。
異常は、実際の環境の変化(実際のドリフト)や、故障した感覚デバイス(仮想ドリフト)から生じる。
論文 参考訳(メタデータ) (2021-07-28T10:19:58Z) - Automatic Learning to Detect Concept Drift [40.69280758487987]
誤り率の変化パターンを追跡し,コンセプトドリフトの分類を学習する新しいフレームワークであるMeta-ADDを提案する。
具体的には、トレーニングフェーズにおいて、様々なコンセプトドリフトの誤差率に基づいてメタ特徴を抽出し、その後、原型ニューラルネットワークを介してメタ検出装置を開発する。
検出フェーズでは、学習したメタ検出器が微調整され、ストリームベースのアクティブラーニングを介して対応するデータストリームに適応する。
論文 参考訳(メタデータ) (2021-05-04T11:10:39Z) - Adversarial Concept Drift Detection under Poisoning Attacks for Robust
Data Stream Mining [15.49323098362628]
本稿では,敵対的攻撃と毒殺攻撃の存在下でのロバストな概念ドリフト検出のための枠組みを提案する。
本稿では,2種類の逆流の概念と,頑健な訓練可能なドリフト検出器の分類について紹介する。
また,ロバストネスの相対損失 (Relative Loss of Robustness) についても紹介する。
論文 参考訳(メタデータ) (2020-09-20T18:46:31Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
本稿では,1回のフォワードパスで,テスト時に分布データポイントの発見と拒否が可能な決定論的ディープモデルを訓練する手法を提案する。
我々は,新しい損失関数とセントロイド更新方式を用いて,これらをスケールトレーニングし,ソフトマックスモデルの精度に適合させる。
論文 参考訳(メタデータ) (2020-03-04T12:27:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。