Do Generative AI Tools Ensure Green Code? An Investigative Study
- URL: http://arxiv.org/abs/2506.08790v1
- Date: Tue, 10 Jun 2025 13:38:41 GMT
- Title: Do Generative AI Tools Ensure Green Code? An Investigative Study
- Authors: Samarth Sikand, Rohit Mehra, Vibhu Saujanya Sharma, Vikrant Kaulgud, Sanjay Podder, Adam P. Burden,
- Abstract summary: We present the results of an early investigation into the sustainability aspects of AI-generated code across three popular generative AI tools.<n>Results highlight the default non-green behavior of tools for generating code, across multiple rules and scenarios.
- Score: 9.067268029288195
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Software sustainability is emerging as a primary concern, aiming to optimize resource utilization, minimize environmental impact, and promote a greener, more resilient digital ecosystem. The sustainability or "greenness" of software is typically determined by the adoption of sustainable coding practices. With a maturing ecosystem around generative AI, many software developers now rely on these tools to generate code using natural language prompts. Despite their potential advantages, there is a significant lack of studies on the sustainability aspects of AI-generated code. Specifically, how environmentally friendly is the AI-generated code based upon its adoption of sustainable coding practices? In this paper, we present the results of an early investigation into the sustainability aspects of AI-generated code across three popular generative AI tools - ChatGPT, BARD, and Copilot. The results highlight the default non-green behavior of tools for generating code, across multiple rules and scenarios. It underscores the need for further in-depth investigations and effective remediation strategies.
Related papers
- Towards a Knowledge Base of Common Sustainability Weaknesses in Green Software Development [9.521952718902973]
In this paper, we motivate the need for the development of a standard knowledge base of commonly occurring sustainability weaknesses in code.<n>We demonstrate why existing knowledge regarding software weaknesses cannot be re-tagged "as is" to sustainability without significant due diligence.
arXiv Detail & Related papers (2025-06-10T14:03:58Z) - Greening AI-enabled Systems with Software Engineering: A Research Agenda for Environmentally Sustainable AI Practices [70.24403396375277]
The "Greening AI with Software Engineering" CECAM-Lorentz workshop was held February 3-7, 2025 in Lausanne, Switzerland.<n>This report presents a research agenda emerging from the workshop.<n>It outlines open research directions and practical recommendations to guide the development of environmentally sustainable AI-enabled systems.
arXiv Detail & Related papers (2025-06-02T15:19:49Z) - Open and Sustainable AI: challenges, opportunities and the road ahead in the life sciences [50.9036832382286]
We review the increased erosion of trust in AI research outputs, driven by the issues of poor reusability.<n>We discuss the fragmented components of the AI ecosystem and lack of guiding pathways to best support Open and Sustainable AI.<n>Our work connects researchers with relevant AI resources, facilitating the implementation of sustainable, reusable and transparent AI.
arXiv Detail & Related papers (2025-05-22T12:52:34Z) - Carbon Footprint Evaluation of Code Generation through LLM as a Service [5.782162597806532]
Green coding and claims that AI models can improve energy efficiency have grown in popularity.<n>We present an overview of green coding and metrics to measure AI model sustainability awareness.
arXiv Detail & Related papers (2025-03-30T15:27:04Z) - Innovating for Tomorrow: The Convergence of SE and Green AI [2.013374581642707]
Machine learning is changing the frontiers of existing software engineering processes.
We reflect on the impact of adopting environmentally friendly practices to create AI-enabled software systems.
arXiv Detail & Related papers (2024-06-26T07:47:04Z) - Learn to Code Sustainably: An Empirical Study on LLM-based Green Code
Generation [7.8273713434806345]
We evaluate the sustainability of auto-generate codes produced by generative commercial AI language models.
We compare the performance and green capacity of human-generated code and code generated by the three AI language models.
arXiv Detail & Related papers (2024-03-05T22:12:01Z) - Green Edge AI: A Contemporary Survey [46.11332733210337]
The transformative power of AI is derived from the utilization of deep neural networks (DNNs)
Deep learning (DL) is increasingly being transitioned to wireless edge networks in proximity to end-user devices (EUDs)
Despite its potential, edge AI faces substantial challenges, mostly due to the dichotomy between the resource limitations of wireless edge networks and the resource-intensive nature of DL.
arXiv Detail & Related papers (2023-12-01T04:04:37Z) - On the Opportunities of Green Computing: A Survey [80.21955522431168]
Artificial Intelligence (AI) has achieved significant advancements in technology and research with the development over several decades.
The needs for high computing power brings higher carbon emission and undermines research fairness.
To tackle the challenges of computing resources and environmental impact of AI, Green Computing has become a hot research topic.
arXiv Detail & Related papers (2023-11-01T11:16:41Z) - Generation Probabilities Are Not Enough: Uncertainty Highlighting in AI Code Completions [54.55334589363247]
We study whether conveying information about uncertainty enables programmers to more quickly and accurately produce code.
We find that highlighting tokens with the highest predicted likelihood of being edited leads to faster task completion and more targeted edits.
arXiv Detail & Related papers (2023-02-14T18:43:34Z) - AI Maintenance: A Robustness Perspective [91.28724422822003]
We introduce highlighted robustness challenges in the AI lifecycle and motivate AI maintenance by making analogies to car maintenance.
We propose an AI model inspection framework to detect and mitigate robustness risks.
Our proposal for AI maintenance facilitates robustness assessment, status tracking, risk scanning, model hardening, and regulation throughout the AI lifecycle.
arXiv Detail & Related papers (2023-01-08T15:02:38Z) - Towards Sustainable Artificial Intelligence: An Overview of
Environmental Protection Uses and Issues [0.0]
This paper describes the paradox of an energy-consuming technology serving the ecological challenges of tomorrow.
It draws on numerous examples from AI for Green players to present use cases and concrete examples.
The environmental dimension is part of the broader ethical problem of AI, and addressing it is crucial for ensuring the sustainability of AI in the long term.
arXiv Detail & Related papers (2022-12-22T14:31:48Z) - Eco2AI: carbon emissions tracking of machine learning models as the
first step towards sustainable AI [47.130004596434816]
In eco2AI we put emphasis on accuracy of energy consumption tracking and correct regional CO2 emissions accounting.
The motivation also comes from the concept of AI-based green house gases sequestrating cycle with both Sustainable AI and Green AI pathways.
arXiv Detail & Related papers (2022-07-31T09:34:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.