Innovating for Tomorrow: The Convergence of SE and Green AI
- URL: http://arxiv.org/abs/2406.18142v1
- Date: Wed, 26 Jun 2024 07:47:04 GMT
- Title: Innovating for Tomorrow: The Convergence of SE and Green AI
- Authors: Luís Cruz, Xavier Franch Gutierrez, Silverio Martínez-Fernández,
- Abstract summary: Machine learning is changing the frontiers of existing software engineering processes.
We reflect on the impact of adopting environmentally friendly practices to create AI-enabled software systems.
- Score: 2.013374581642707
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The latest advancements in machine learning, specifically in foundation models, are revolutionizing the frontiers of existing software engineering (SE) processes. This is a bi-directional phenomona, where 1) software systems are now challenged to provide AI-enabled features to their users, and 2) AI is used to automate tasks within the software development lifecycle. In an era where sustainability is a pressing societal concern, our community needs to adopt a long-term plan enabling a conscious transformation that aligns with environmental sustainability values. In this paper, we reflect on the impact of adopting environmentally friendly practices to create AI-enabled software systems and make considerations on the environmental impact of using foundation models for software development.
Related papers
- Overview of Current Challenges in Multi-Architecture Software Engineering and a Vision for the Future [0.0]
The presented system architecture is based on the concept of dynamic, knowledge graph-based WebAssembly Twins.
The resulting systems are to possess advanced autonomous capabilities, with full transparency and controllability by the end user.
arXiv Detail & Related papers (2024-10-28T13:03:09Z) - The Future of Software Engineering in an AI-Driven World [4.915744683251151]
In the next five years, we will likely see an increasing symbiotic partnership between human developers and AI.
We present our vision of the future of software development in an AI-Driven world and explore the key challenges that our research community should address to realize this vision.
arXiv Detail & Related papers (2024-06-11T21:46:19Z) - Towards Green AI: Current status and future research [0.3749861135832072]
We aim to broaden the discourse on Green AI by investigating the current status of approaches to both environmental assessment and ecodesign of AI systems.
We conduct an exemplary estimation of the carbon footprint of relevant compute hardware and highlight the need to further investigate methods for Green AI.
We envision that AI could be leveraged to mitigate its own environmental challenges, which we denote as AI4greenAI.
arXiv Detail & Related papers (2024-05-01T08:10:01Z) - Bridging Gaps, Building Futures: Advancing Software Developer Diversity and Inclusion Through Future-Oriented Research [50.545824691484796]
We present insights from SE researchers and practitioners on challenges and solutions regarding diversity and inclusion in SE.
We share potential utopian and dystopian visions of the future and provide future research directions and implications for academia and industry.
arXiv Detail & Related papers (2024-04-10T16:18:11Z) - On the Opportunities of Green Computing: A Survey [80.21955522431168]
Artificial Intelligence (AI) has achieved significant advancements in technology and research with the development over several decades.
The needs for high computing power brings higher carbon emission and undermines research fairness.
To tackle the challenges of computing resources and environmental impact of AI, Green Computing has become a hot research topic.
arXiv Detail & Related papers (2023-11-01T11:16:41Z) - AI Maintenance: A Robustness Perspective [91.28724422822003]
We introduce highlighted robustness challenges in the AI lifecycle and motivate AI maintenance by making analogies to car maintenance.
We propose an AI model inspection framework to detect and mitigate robustness risks.
Our proposal for AI maintenance facilitates robustness assessment, status tracking, risk scanning, model hardening, and regulation throughout the AI lifecycle.
arXiv Detail & Related papers (2023-01-08T15:02:38Z) - Towards Sustainable Artificial Intelligence: An Overview of
Environmental Protection Uses and Issues [0.0]
This paper describes the paradox of an energy-consuming technology serving the ecological challenges of tomorrow.
It draws on numerous examples from AI for Green players to present use cases and concrete examples.
The environmental dimension is part of the broader ethical problem of AI, and addressing it is crucial for ensuring the sustainability of AI in the long term.
arXiv Detail & Related papers (2022-12-22T14:31:48Z) - Selected Trends in Artificial Intelligence for Space Applications [69.3474006357492]
This chapter focuses on differentiable intelligence and on-board machine learning.
We discuss a few selected projects originating from the European Space Agency's (ESA) Advanced Concepts Team (ACT)
arXiv Detail & Related papers (2022-12-10T07:49:50Z) - Enabling Automated Machine Learning for Model-Driven AI Engineering [60.09869520679979]
We propose a novel approach to enable Model-Driven Software Engineering and Model-Driven AI Engineering.
In particular, we support Automated ML, thus assisting software engineers without deep AI knowledge in developing AI-intensive systems.
arXiv Detail & Related papers (2022-03-06T10:12:56Z) - Agility in Software 2.0 -- Notebook Interfaces and MLOps with Buttresses
and Rebars [9.327920030279586]
We discuss two contemporary development phenomena that are fundamental in machine learning development.
First, we present a solution that can remedy some of the intrinsic weaknesses of working in notebooks by supporting easy transitions to integrated development environments.
Second, we propose reinforced engineering of AI systems by introducing metaphorical buttresses and rebars in the MLOps context.
arXiv Detail & Related papers (2021-11-28T13:40:30Z) - Empowered and Embedded: Ethics and Agile Processes [60.63670249088117]
We argue that ethical considerations need to be embedded into the (agile) software development process.
We put emphasis on the possibility to implement ethical deliberations in already existing and well established agile software development processes.
arXiv Detail & Related papers (2021-07-15T11:14:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.