論文の概要: Preference-Driven Multi-Objective Combinatorial Optimization with Conditional Computation
- arxiv url: http://arxiv.org/abs/2506.08898v1
- Date: Tue, 10 Jun 2025 15:25:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-11 15:11:42.674041
- Title: Preference-Driven Multi-Objective Combinatorial Optimization with Conditional Computation
- Title(参考訳): 条件計算を用いた優先駆動型多目的組合せ最適化
- Authors: Mingfeng Fan, Jianan Zhou, Yifeng Zhang, Yaoxin Wu, Jinbiao Chen, Guillaume Adrien Sartoretti,
- Abstract要約: POCCOはサブプロブレムのためのモデル構造を適応的に選択できる新しいプラグイン・アンド・プレイフレームワークである。
そこで本研究では,勝利と敗退の間のペアワイズな選好を学習する選好駆動最適化アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 10.153136816705542
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent deep reinforcement learning methods have achieved remarkable success in solving multi-objective combinatorial optimization problems (MOCOPs) by decomposing them into multiple subproblems, each associated with a specific weight vector. However, these methods typically treat all subproblems equally and solve them using a single model, hindering the effective exploration of the solution space and thus leading to suboptimal performance. To overcome the limitation, we propose POCCO, a novel plug-and-play framework that enables adaptive selection of model structures for subproblems, which are subsequently optimized based on preference signals rather than explicit reward values. Specifically, we design a conditional computation block that routes subproblems to specialized neural architectures. Moreover, we propose a preference-driven optimization algorithm that learns pairwise preferences between winning and losing solutions. We evaluate the efficacy and versatility of POCCO by applying it to two state-of-the-art neural methods for MOCOPs. Experimental results across four classic MOCOP benchmarks demonstrate its significant superiority and strong generalization.
- Abstract(参考訳): 近年の深層強化学習法は,多目的組合せ最適化問題 (MOCOP) の解法において,それぞれが特定の重みベクトルに関連付けられた複数のサブプロブレムに分解することで,顕著な成功を収めている。
しかし、これらの手法は一般に全てのサブプロブレムを等しく扱い、1つのモデルで解決し、解空間の効率的な探索を妨げる。
この制限を克服するために,サブプロブレムのモデル構造を適応的に選択できる新しいプラグイン・アンド・プレイフレームワークPOCCOを提案する。
具体的には、サブプロブレムを特殊なニューラルネットワークアーキテクチャにルーティングする条件付き計算ブロックを設計する。
さらに,勝利と敗退の解のペアワイズな選好を学習する選好駆動最適化アルゴリズムを提案する。
我々はMOCOPの2つの最先端ニューラルネットワークに適用することにより,POCCOの有効性と汎用性を評価する。
4つの古典的MOCOPベンチマークの実験的結果は、その顕著な優位性と強力な一般化を示している。
関連論文リスト
- Preference Optimization for Combinatorial Optimization Problems [54.87466279363487]
強化学習(Reinforcement Learning, RL)は、ニューラルネットワーク最適化のための強力なツールとして登場した。
大幅な進歩にもかかわらず、既存のRLアプローチは報酬信号の減少や大規模な行動空間における非効率な探索といった課題に直面している。
統計的比較モデルを用いて定量的報酬信号を定性的選好信号に変換する新しい手法であるPreference Optimizationを提案する。
論文 参考訳(メタデータ) (2025-05-13T16:47:00Z) - LLaMA-Berry: Pairwise Optimization for O1-like Olympiad-Level Mathematical Reasoning [56.273799410256075]
このフレームワークはMonte Carlo Tree Search (MCTS)と反復的なSelf-Refineを組み合わせて推論パスを最適化する。
このフレームワークは、一般的なベンチマークと高度なベンチマークでテストされており、探索効率と問題解決能力の点で優れた性能を示している。
論文 参考訳(メタデータ) (2024-10-03T18:12:29Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
本稿では,DeepMatching NetworksとReinforcement Learningメソッドの有効性を解析するための新しい理論フレームワークを提案する。
我々の主な貢献は、Max- and Min-Cut、Max-$k$-Bipartite-Bi、Maximum-Weight-Bipartite-Bi、Traveing Salesman Problemを含む幅広い問題である。
本分析の副産物として,バニラ降下による新たな正則化プロセスを導入し,失効する段階的な問題に対処し,悪い静止点から逃れる上で有効であることを示す理論的および実験的証拠を提供する。
論文 参考訳(メタデータ) (2023-10-08T23:39:38Z) - Optimization and Optimizers for Adversarial Robustness [10.279287131070157]
本稿では,汎用的制約最適化解法と制約Foldingを融合した新しいフレームワークを提案する。
信頼性に関して、PWCFは、ソリューションの品質を評価するための定常度測定と実現可能性テストのソリューションを提供する。
さらに、損失、摂動モデル、最適化アルゴリズムの様々な組み合わせを用いて、これらの問題を解決するための解の異なるパターンについて検討する。
論文 参考訳(メタデータ) (2023-03-23T16:22:59Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
分子目的を最適化するための様々なZO最適化手法の有効性について検討する。
ZO符号に基づく勾配降下(ZO-signGD)の利点を示す。
本稿では,Guurcamol スイートから広く使用されているベンチマークタスクに対して,ZO 最適化手法の有効性を示す。
論文 参考訳(メタデータ) (2022-10-27T01:58:10Z) - A Study of Scalarisation Techniques for Multi-Objective QUBO Solving [0.0]
量子および量子に着想を得た最適化アルゴリズムは、学術ベンチマークや実世界の問題に適用した場合に有望な性能を示す。
しかし、QUBOソルバは単目的解法であり、複数の目的による問題の解法をより効率的にするためには、そのような多目的問題を単目的問題に変換する方法を決定する必要がある。
論文 参考訳(メタデータ) (2022-10-20T14:54:37Z) - Pareto Set Learning for Neural Multi-objective Combinatorial
Optimization [6.091096843566857]
多目的最適化(MOCO)の問題は、現実世界の多くのアプリケーションで見られる。
我々は,与えられたMOCO問題に対するパレート集合全体を,探索手順を伴わずに近似する学習ベースアプローチを開発した。
提案手法は,多目的走行セールスマン問題,マルチコンディショニング車両ルーティング問題,複数クナップサック問題において,ソリューションの品質,速度,モデル効率の面で,他の方法よりも優れていた。
論文 参考訳(メタデータ) (2022-03-29T09:26:22Z) - A novel multiobjective evolutionary algorithm based on decomposition and
multi-reference points strategy [14.102326122777475]
分解に基づく多目的進化アルゴリズム(MOEA/D)は、多目的最適化問題(MOP)を解く上で、極めて有望なアプローチであると考えられている。
本稿では,よく知られたPascoletti-Serafiniスキャラライゼーション法とマルチ参照ポイントの新たな戦略により,MOEA/Dアルゴリズムの改良を提案する。
論文 参考訳(メタデータ) (2021-10-27T02:07:08Z) - Batched Data-Driven Evolutionary Multi-Objective Optimization Based on
Manifold Interpolation [6.560512252982714]
バッチ化されたデータ駆動型進化的多目的最適化を実現するためのフレームワークを提案する。
オフザシェルフ進化的多目的最適化アルゴリズムがプラグイン方式で適用できるのは、非常に一般的である。
提案するフレームワークは, より高速な収束と各種PF形状に対する強いレジリエンスを特徴とする。
論文 参考訳(メタデータ) (2021-09-12T23:54:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。